Loading…

The Time Course of Glutamate in the Synaptic Cleft

The peak concentration and rate of clearance of neurotransmitter from the synaptic cleft are important determinants of synaptic function, yet the neurotransmitter concentration time course is unknown at synapses in the brain. The time course of free glutamate in the cleft was estimated by kinetic an...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1992-11, Vol.258 (5087), p.1498-1501
Main Authors: Clements, John D., Robin A. J. Lester, Tong, Gang, Jahr, Craig E., Westbrook, Gary L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The peak concentration and rate of clearance of neurotransmitter from the synaptic cleft are important determinants of synaptic function, yet the neurotransmitter concentration time course is unknown at synapses in the brain. The time course of free glutamate in the cleft was estimated by kinetic analysis of the displacement of a rapidly dissociating competitive antagonist from N-methyl-D-aspartate (NMDA) receptors during synaptic transmission. Glutamate peaked at 1.1 millimolar and decayed with a time constant of 1.2 milliseconds at cultured hippocampal synapses. This time course implies that transmitter saturates postsynaptic NMDA receptors. However, glutamate dissociates much more rapidly from α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Thus, the time course of free glutamate predicts that dissociation contributes to the decay of the AMPA receptor-mediated postsynaptic current.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1359647