Loading…
Resonant add-drop filter based on a photonic quasicrystal
We present a numerical study of optical properties of an octagonal quasi-periodic lattice of dielectric rods. We report on a complete photonic bandgap in TM polarization up to extremely low dielectric constants of rods. The first photonic bandgap remains open down to dielectric constant as small as...
Saved in:
Published in: | Optics express 2005-02, Vol.13 (3), p.826-835 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a numerical study of optical properties of an octagonal quasi-periodic lattice of dielectric rods. We report on a complete photonic bandgap in TM polarization up to extremely low dielectric constants of rods. The first photonic bandgap remains open down to dielectric constant as small as epsilon = 1.6 (n = 1.26). The properties of an optical microcavity and waveguides are examined for the system of rods with dielectric constant epsilon = 5.0 (n = 2.24) in order to design an add-drop filter. Proposed add-drop filter is numerically characterized and further optimized for efficient operation. The two-dimensional finite difference time domain method was exploited for numerical calculations. We provide a numerical evidence of effective add-drop filter based on low index material, thus opening further opportunities for application of low refractive index materials in photonic bandgap optics. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OPEX.13.000826 |