Loading…
Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires
By performing time-resolved experiments and power-dependent measurements using femtosecond pulses inside submicron cross-section Si photonic-wire waveguides, we demonstrate strong cross-phase modulation (XPM) effects. We find that XPM in Si wires can be significant even for low peak pump powers, i.e...
Saved in:
Published in: | Optics express 2007-02, Vol.15 (3), p.1135-1146 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By performing time-resolved experiments and power-dependent measurements using femtosecond pulses inside submicron cross-section Si photonic-wire waveguides, we demonstrate strong cross-phase modulation (XPM) effects. We find that XPM in Si wires can be significant even for low peak pump powers, i.e., ~15 mW for pi phase shift. Our experimental data closely match numerical simulations using a rigorous coupled-wave theoretical treatment. Our results suggest that XPM is a potentially useful approach for all-optical control of photonic devices in Si wires. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.15.001135 |