Loading…
Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules
The solvent dependence of the second hyperpolarizability, γ, of a variety of unsaturated organic compounds has been measured by third harmonic generation at 1907 nanometers. It is seen that the measured γ is a function of solvent polarity. These solvent-dependent hyperpolarizabilities are associated...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1993-07, Vol.261 (5118), p.186-189 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The solvent dependence of the second hyperpolarizability, γ, of a variety of unsaturated organic compounds has been measured by third harmonic generation at 1907 nanometers. It is seen that the measured γ is a function of solvent polarity. These solvent-dependent hyperpolarizabilities are associated with changes in molecular geometry from a highly bond-length alternated, polyene-like structure for a formyl-substituted compound in non-polar solvents, to a cyanine-like structure, with little bond-length alternation, for a dicyanovinyl-substituted compound in polar solvents. By tuning bond-length alternation, γ can be optimized in either a positive or negative sense for polymethine dyes of a given conjugation length. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.261.5118.186 |