Loading…
Room-Temperature, Electric Field-Induced Creation of Stable Devices in CulnSe2 Crystals
Multiple-junction structures were formed, on a microscopic scale, at room temperature, by the application of a strong electric field across originally homogeneous crystals of the ternary chalcopyrite semiconductor CulnSe(2). After removal of the electric field, the structures were examined with elec...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1992-10, Vol.258 (5080), p.271-274 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiple-junction structures were formed, on a microscopic scale, at room temperature, by the application of a strong electric field across originally homogeneous crystals of the ternary chalcopyrite semiconductor CulnSe(2). After removal of the electric field, the structures were examined with electron beam-induced current microscopy and their current-voltage characteristics were measured. Bipolar transistor action was observed, indicating that sharp bulk junctions can form in this way at low ambient temperatures. The devices are stable under normal (low-voltage) operating conditions. Possible causes for this effect, including electromigration and electric field-assisted defect reactions, are suggested. |
---|---|
ISSN: | 0036-8075 |
DOI: | 10.1126/science.258.5080.271 |