Loading…

Encoding and retrieval in a model of the hippocampal CA1 microcircuit

It has been proposed that the hippocampal theta rhythm (4–7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half‐cycles (Hasselmo et al. (2002) Neural Comput 14:793–817). We investigate, via computer simulations, the biophys...

Full description

Saved in:
Bibliographic Details
Published in:Hippocampus 2010-03, Vol.20 (3), p.423-446
Main Authors: Cutsuridis, Vassilis, Cobb, Stuart, Graham, Bruce P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203
cites cdi_FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203
container_end_page 446
container_issue 3
container_start_page 423
container_title Hippocampus
container_volume 20
creator Cutsuridis, Vassilis
Cobb, Stuart
Graham, Bruce P.
description It has been proposed that the hippocampal theta rhythm (4–7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half‐cycles (Hasselmo et al. (2002) Neural Comput 14:793–817). We investigate, via computer simulations, the biophysical mechanisms by which storage and recall of spatio‐temporal input patterns are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit is presented that uses biophysical representations of the major cell types, including pyramidal (P) cells and four types of inhibitory interneurons: basket (B) cells, axo‐axonic (AA) cells, bistratified (BS) cells and oriens lacunosum‐moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum. The EC input provides the sensory information, whereas all other inputs provide context and timing information. Septal input provides timing information for phasing storage and recall. Storage is accomplished via a local STDP mediated hetero‐association of the EC input pattern and the incoming CA3 input pattern on the CA1 pyramidal cell target synapses. The model simulates the timing of firing of different hippocampal cell types relative to the theta rhythm in anesthetized animals and proposes experimentally confirmed functional roles for the different classes of inhibitory interneurons in the storage and recall cycles (Klausberger et al., (2003, 2004) Nature 421:844–848, Nat Neurosci 7:41–47). Measures of recall performance of new and previously stored input patterns in the presence or absence of various inhibitory interneurons are employed to quantitatively test the performance of our model. Finally, the mean recall quality of the CA1 microcircuit is tested as the number of stored patterns is increased. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hipo.20661
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733291764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733291764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWw4QOQd0hIKXacuPGyqvqiqEUCxNJynQk15IWdAP17UlJgx8oj-dwzo4vQOSV9Soh_vTFl0fcJ5_QAdSkRkUcJZ4e7OSSe4Ix20IlzL4RQGhJyjDpUBJFool00Hue6iE3-jFUeYwuVNfCuUmxyrHBWxJDiIsHVBnCzpSy0ysrmdzSkODPaFtpYXZvqFB0lKnVwtn976HEyfhjNvNvVdD4a3no6YD71QMRxonkQQxABTyJN1hSAR4oIwSEMYxABACSR8gWL1kowEFoLzTVXPPEJ66HL1lva4q0GV8nMOA1pqnIoaicHjPmCDnjQkFct2RzpnIVEltZkym4lJXLXmty1Jr9ba-CLvbZeZxD_ofuaGoC2wIdJYfuPSs7md6sfqddmjKvg8zej7KvkAzYI5dNyKvnNPV8uFlM5YV_r0IbS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733291764</pqid></control><display><type>article</type><title>Encoding and retrieval in a model of the hippocampal CA1 microcircuit</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cutsuridis, Vassilis ; Cobb, Stuart ; Graham, Bruce P.</creator><creatorcontrib>Cutsuridis, Vassilis ; Cobb, Stuart ; Graham, Bruce P.</creatorcontrib><description>It has been proposed that the hippocampal theta rhythm (4–7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half‐cycles (Hasselmo et al. (2002) Neural Comput 14:793–817). We investigate, via computer simulations, the biophysical mechanisms by which storage and recall of spatio‐temporal input patterns are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit is presented that uses biophysical representations of the major cell types, including pyramidal (P) cells and four types of inhibitory interneurons: basket (B) cells, axo‐axonic (AA) cells, bistratified (BS) cells and oriens lacunosum‐moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum. The EC input provides the sensory information, whereas all other inputs provide context and timing information. Septal input provides timing information for phasing storage and recall. Storage is accomplished via a local STDP mediated hetero‐association of the EC input pattern and the incoming CA3 input pattern on the CA1 pyramidal cell target synapses. The model simulates the timing of firing of different hippocampal cell types relative to the theta rhythm in anesthetized animals and proposes experimentally confirmed functional roles for the different classes of inhibitory interneurons in the storage and recall cycles (Klausberger et al., (2003, 2004) Nature 421:844–848, Nat Neurosci 7:41–47). Measures of recall performance of new and previously stored input patterns in the presence or absence of various inhibitory interneurons are employed to quantitatively test the performance of our model. Finally, the mean recall quality of the CA1 microcircuit is tested as the number of stored patterns is increased. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1050-9631</identifier><identifier>EISSN: 1098-1063</identifier><identifier>DOI: 10.1002/hipo.20661</identifier><identifier>PMID: 19489002</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Action Potentials - physiology ; Afferent Pathways - cytology ; Afferent Pathways - physiology ; Animals ; axo-axonic cell ; Axons - physiology ; Axons - ultrastructure ; basket cell ; Biological Clocks - physiology ; bistratified cell ; CA1 microcircuit model ; CA1 Region, Hippocampal - cytology ; CA1 Region, Hippocampal - physiology ; Computer Simulation ; Dendrites - physiology ; Dendrites - ultrastructure ; Excitatory Postsynaptic Potentials - physiology ; gamma-Aminobutyric Acid - physiology ; Humans ; Inhibitory Postsynaptic Potentials - physiology ; Interneurons - cytology ; Interneurons - physiology ; Learning - physiology ; Memory - physiology ; Neural Inhibition - physiology ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurons - cytology ; Neurons - physiology ; OLM cell ; pyramidal cell ; Pyramidal Cells - cytology ; Pyramidal Cells - physiology ; STDP ; storage and recall ; Synaptic Transmission - physiology ; Theta Rhythm</subject><ispartof>Hippocampus, 2010-03, Vol.20 (3), p.423-446</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc., a Wiley company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203</citedby><cites>FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19489002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutsuridis, Vassilis</creatorcontrib><creatorcontrib>Cobb, Stuart</creatorcontrib><creatorcontrib>Graham, Bruce P.</creatorcontrib><title>Encoding and retrieval in a model of the hippocampal CA1 microcircuit</title><title>Hippocampus</title><addtitle>Hippocampus</addtitle><description>It has been proposed that the hippocampal theta rhythm (4–7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half‐cycles (Hasselmo et al. (2002) Neural Comput 14:793–817). We investigate, via computer simulations, the biophysical mechanisms by which storage and recall of spatio‐temporal input patterns are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit is presented that uses biophysical representations of the major cell types, including pyramidal (P) cells and four types of inhibitory interneurons: basket (B) cells, axo‐axonic (AA) cells, bistratified (BS) cells and oriens lacunosum‐moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum. The EC input provides the sensory information, whereas all other inputs provide context and timing information. Septal input provides timing information for phasing storage and recall. Storage is accomplished via a local STDP mediated hetero‐association of the EC input pattern and the incoming CA3 input pattern on the CA1 pyramidal cell target synapses. The model simulates the timing of firing of different hippocampal cell types relative to the theta rhythm in anesthetized animals and proposes experimentally confirmed functional roles for the different classes of inhibitory interneurons in the storage and recall cycles (Klausberger et al., (2003, 2004) Nature 421:844–848, Nat Neurosci 7:41–47). Measures of recall performance of new and previously stored input patterns in the presence or absence of various inhibitory interneurons are employed to quantitatively test the performance of our model. Finally, the mean recall quality of the CA1 microcircuit is tested as the number of stored patterns is increased. © 2009 Wiley‐Liss, Inc.</description><subject>Action Potentials - physiology</subject><subject>Afferent Pathways - cytology</subject><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>axo-axonic cell</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>basket cell</subject><subject>Biological Clocks - physiology</subject><subject>bistratified cell</subject><subject>CA1 microcircuit model</subject><subject>CA1 Region, Hippocampal - cytology</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Computer Simulation</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Humans</subject><subject>Inhibitory Postsynaptic Potentials - physiology</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Learning - physiology</subject><subject>Memory - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>OLM cell</subject><subject>pyramidal cell</subject><subject>Pyramidal Cells - cytology</subject><subject>Pyramidal Cells - physiology</subject><subject>STDP</subject><subject>storage and recall</subject><subject>Synaptic Transmission - physiology</subject><subject>Theta Rhythm</subject><issn>1050-9631</issn><issn>1098-1063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqWw4QOQd0hIKXacuPGyqvqiqEUCxNJynQk15IWdAP17UlJgx8oj-dwzo4vQOSV9Soh_vTFl0fcJ5_QAdSkRkUcJZ4e7OSSe4Ix20IlzL4RQGhJyjDpUBJFool00Hue6iE3-jFUeYwuVNfCuUmxyrHBWxJDiIsHVBnCzpSy0ysrmdzSkODPaFtpYXZvqFB0lKnVwtn976HEyfhjNvNvVdD4a3no6YD71QMRxonkQQxABTyJN1hSAR4oIwSEMYxABACSR8gWL1kowEFoLzTVXPPEJ66HL1lva4q0GV8nMOA1pqnIoaicHjPmCDnjQkFct2RzpnIVEltZkym4lJXLXmty1Jr9ba-CLvbZeZxD_ofuaGoC2wIdJYfuPSs7md6sfqddmjKvg8zej7KvkAzYI5dNyKvnNPV8uFlM5YV_r0IbS</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Cutsuridis, Vassilis</creator><creator>Cobb, Stuart</creator><creator>Graham, Bruce P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201003</creationdate><title>Encoding and retrieval in a model of the hippocampal CA1 microcircuit</title><author>Cutsuridis, Vassilis ; Cobb, Stuart ; Graham, Bruce P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials - physiology</topic><topic>Afferent Pathways - cytology</topic><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>axo-axonic cell</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>basket cell</topic><topic>Biological Clocks - physiology</topic><topic>bistratified cell</topic><topic>CA1 microcircuit model</topic><topic>CA1 Region, Hippocampal - cytology</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Computer Simulation</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Humans</topic><topic>Inhibitory Postsynaptic Potentials - physiology</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Learning - physiology</topic><topic>Memory - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>OLM cell</topic><topic>pyramidal cell</topic><topic>Pyramidal Cells - cytology</topic><topic>Pyramidal Cells - physiology</topic><topic>STDP</topic><topic>storage and recall</topic><topic>Synaptic Transmission - physiology</topic><topic>Theta Rhythm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutsuridis, Vassilis</creatorcontrib><creatorcontrib>Cobb, Stuart</creatorcontrib><creatorcontrib>Graham, Bruce P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Hippocampus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutsuridis, Vassilis</au><au>Cobb, Stuart</au><au>Graham, Bruce P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding and retrieval in a model of the hippocampal CA1 microcircuit</atitle><jtitle>Hippocampus</jtitle><addtitle>Hippocampus</addtitle><date>2010-03</date><risdate>2010</risdate><volume>20</volume><issue>3</issue><spage>423</spage><epage>446</epage><pages>423-446</pages><issn>1050-9631</issn><eissn>1098-1063</eissn><abstract>It has been proposed that the hippocampal theta rhythm (4–7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half‐cycles (Hasselmo et al. (2002) Neural Comput 14:793–817). We investigate, via computer simulations, the biophysical mechanisms by which storage and recall of spatio‐temporal input patterns are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit is presented that uses biophysical representations of the major cell types, including pyramidal (P) cells and four types of inhibitory interneurons: basket (B) cells, axo‐axonic (AA) cells, bistratified (BS) cells and oriens lacunosum‐moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum. The EC input provides the sensory information, whereas all other inputs provide context and timing information. Septal input provides timing information for phasing storage and recall. Storage is accomplished via a local STDP mediated hetero‐association of the EC input pattern and the incoming CA3 input pattern on the CA1 pyramidal cell target synapses. The model simulates the timing of firing of different hippocampal cell types relative to the theta rhythm in anesthetized animals and proposes experimentally confirmed functional roles for the different classes of inhibitory interneurons in the storage and recall cycles (Klausberger et al., (2003, 2004) Nature 421:844–848, Nat Neurosci 7:41–47). Measures of recall performance of new and previously stored input patterns in the presence or absence of various inhibitory interneurons are employed to quantitatively test the performance of our model. Finally, the mean recall quality of the CA1 microcircuit is tested as the number of stored patterns is increased. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19489002</pmid><doi>10.1002/hipo.20661</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-9631
ispartof Hippocampus, 2010-03, Vol.20 (3), p.423-446
issn 1050-9631
1098-1063
language eng
recordid cdi_proquest_miscellaneous_733291764
source Wiley-Blackwell Read & Publish Collection
subjects Action Potentials - physiology
Afferent Pathways - cytology
Afferent Pathways - physiology
Animals
axo-axonic cell
Axons - physiology
Axons - ultrastructure
basket cell
Biological Clocks - physiology
bistratified cell
CA1 microcircuit model
CA1 Region, Hippocampal - cytology
CA1 Region, Hippocampal - physiology
Computer Simulation
Dendrites - physiology
Dendrites - ultrastructure
Excitatory Postsynaptic Potentials - physiology
gamma-Aminobutyric Acid - physiology
Humans
Inhibitory Postsynaptic Potentials - physiology
Interneurons - cytology
Interneurons - physiology
Learning - physiology
Memory - physiology
Neural Inhibition - physiology
Neural Pathways - cytology
Neural Pathways - physiology
Neurons - cytology
Neurons - physiology
OLM cell
pyramidal cell
Pyramidal Cells - cytology
Pyramidal Cells - physiology
STDP
storage and recall
Synaptic Transmission - physiology
Theta Rhythm
title Encoding and retrieval in a model of the hippocampal CA1 microcircuit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20and%20retrieval%20in%20a%20model%20of%20the%20hippocampal%20CA1%20microcircuit&rft.jtitle=Hippocampus&rft.au=Cutsuridis,%20Vassilis&rft.date=2010-03&rft.volume=20&rft.issue=3&rft.spage=423&rft.epage=446&rft.pages=423-446&rft.issn=1050-9631&rft.eissn=1098-1063&rft_id=info:doi/10.1002/hipo.20661&rft_dat=%3Cproquest_cross%3E733291764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4321-e9ddfc64de48e6f8c0b1ee68a0996e55de94eeef8a2938ba93e9cc9c6c6a6f203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733291764&rft_id=info:pmid/19489002&rfr_iscdi=true