Loading…

Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification

Fibroblast growth factor receptors (FGFR) are cell surface tyrosine kinases that function in cell proliferation and differentiation. Aberrant FGFR signaling occurs in diverse cancers due to gene amplification, but the associated oncogenic mechanisms are poorly understood. Using a proteomics approach...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2010-04, Vol.70 (8), p.3391-3401
Main Authors: Dudka, Anna A, Sweet, Steve M M, Heath, John K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fibroblast growth factor receptors (FGFR) are cell surface tyrosine kinases that function in cell proliferation and differentiation. Aberrant FGFR signaling occurs in diverse cancers due to gene amplification, but the associated oncogenic mechanisms are poorly understood. Using a proteomics approach, we identified signal transducers and activators of transcription-3 (STAT3) as a receptor-binding partner that is mediated by Tyr(677) phosphorylation on FGFR. Binding to activated FGFR was essential for subsequent tyrosine phosphorylation and nuclear translocation of STAT3, along with activation of its downstream target genes. Tyrosine phosphorylation of STAT3 was also dependent on concomitant FGFR-dependent activity of SRC and JAK kinases. Lastly, tyrosine (but not serine) phosphorylation of STAT3 required amplified FGFR protein expression, generated either by enforced overexpression or as associated with gene amplification in cancer cells. Our findings show that amplified FGFR expression engages the STAT3 pathway, and they suggest therapeutic strategies to attack FGFR-overexpressing cancers.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-09-3033