Loading…

Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase

In this work, high ΔμH + -dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis . The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing s...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) 2010, Vol.75 (1), p.50-62
Main Authors: Azarkina, N. V., Konstantinov, A. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3
cites cdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3
container_end_page 62
container_issue 1
container_start_page 50
container_title Biochemistry (Moscow)
container_volume 75
creator Azarkina, N. V.
Konstantinov, A. A.
description In this work, high ΔμH + -dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis . The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH + for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH + might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH + could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.
doi_str_mv 10.1134/S0006297910010074
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733335058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A345774878</galeid><sourcerecordid>A345774878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</originalsourceid><addsrcrecordid>eNp1kUFvFSEQx4mxsc_qB_BiNnrwtBUYWFhvtanapMaDet6w7OwLzS60wDZ9fnrZvKpp1TAJA_P7_zMwhLxg9JgxEG-_Ukob3qqWUVpCiUdkwxqqa6CCPiabtVyv9UPyNKXLcuS0hSfkkFMAJrjYkN2Zx7h1P0x2wVdhrN4b66ZpSVVa-uwml6oZ5z4aj9UNJmcnTJXzNqJJJbMmm2mXna2Mze7G5d3qkRZrnTcZ31Wf0ZvrxflQ9OHWDSHisNhcxM_IwWimhM_v9iPy_cPZt9NP9cWXj-enJxe1FaByrSkvAaxtGhiVhEHKASSOyvSoNbNM016YQZVEARjdSCPbUbOWShQAPRyRN3vfqxiuF0y5m12yOE3lSWFJXVEBSCp1IV89IC_DEn1pruPABWMcZIFe76GtmbBzfgw5GrtadicgpFJCq9Xq-B9UWQPOzpbPGF25vydge4GNIaWIY3cV3WzirmO0W4fd_TXsonl51-_Szzj8VvyabgH4Hkil5LcY_zzo_64_Aemispo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232411235</pqid></control><display><type>article</type><title>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</title><source>Springer Nature</source><creator>Azarkina, N. V. ; Konstantinov, A. A.</creator><creatorcontrib>Azarkina, N. V. ; Konstantinov, A. A.</creatorcontrib><description>In this work, high ΔμH + -dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis . The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH + for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH + might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH + could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297910010074</identifier><identifier>PMID: 20331424</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Bacillus subtilis - enzymology ; Bacteria ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Cells ; Chlorophenols - chemistry ; Electron Transport ; Enzymes ; Ionophores ; Kinetics ; Life Sciences ; Membranes ; Membranes - metabolism ; Microbiology ; Oxidases ; Oxidation ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Succinic Acid - metabolism ; Thermodynamics ; Vitamin K 2 - metabolism</subject><ispartof>Biochemistry (Moscow), 2010, Vol.75 (1), p.50-62</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</citedby><cites>FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20331424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azarkina, N. V.</creatorcontrib><creatorcontrib>Konstantinov, A. A.</creatorcontrib><title>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>In this work, high ΔμH + -dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis . The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH + for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH + might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH + could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.</description><subject>Bacillus subtilis - enzymology</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Cells</subject><subject>Chlorophenols - chemistry</subject><subject>Electron Transport</subject><subject>Enzymes</subject><subject>Ionophores</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Membranes - metabolism</subject><subject>Microbiology</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Succinic Acid - metabolism</subject><subject>Thermodynamics</subject><subject>Vitamin K 2 - metabolism</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvFSEQx4mxsc_qB_BiNnrwtBUYWFhvtanapMaDet6w7OwLzS60wDZ9fnrZvKpp1TAJA_P7_zMwhLxg9JgxEG-_Ukob3qqWUVpCiUdkwxqqa6CCPiabtVyv9UPyNKXLcuS0hSfkkFMAJrjYkN2Zx7h1P0x2wVdhrN4b66ZpSVVa-uwml6oZ5z4aj9UNJmcnTJXzNqJJJbMmm2mXna2Mze7G5d3qkRZrnTcZ31Wf0ZvrxflQ9OHWDSHisNhcxM_IwWimhM_v9iPy_cPZt9NP9cWXj-enJxe1FaByrSkvAaxtGhiVhEHKASSOyvSoNbNM016YQZVEARjdSCPbUbOWShQAPRyRN3vfqxiuF0y5m12yOE3lSWFJXVEBSCp1IV89IC_DEn1pruPABWMcZIFe76GtmbBzfgw5GrtadicgpFJCq9Xq-B9UWQPOzpbPGF25vydge4GNIaWIY3cV3WzirmO0W4fd_TXsonl51-_Szzj8VvyabgH4Hkil5LcY_zzo_64_Aemispo</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Azarkina, N. V.</creator><creator>Konstantinov, A. A.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</title><author>Azarkina, N. V. ; Konstantinov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacillus subtilis - enzymology</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Cells</topic><topic>Chlorophenols - chemistry</topic><topic>Electron Transport</topic><topic>Enzymes</topic><topic>Ionophores</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Membranes - metabolism</topic><topic>Microbiology</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Succinic Acid - metabolism</topic><topic>Thermodynamics</topic><topic>Vitamin K 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azarkina, N. V.</creatorcontrib><creatorcontrib>Konstantinov, A. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azarkina, N. V.</au><au>Konstantinov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2010</date><risdate>2010</risdate><volume>75</volume><issue>1</issue><spage>50</spage><epage>62</epage><pages>50-62</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>In this work, high ΔμH + -dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis . The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH + for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH + might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH + could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><pmid>20331424</pmid><doi>10.1134/S0006297910010074</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2010, Vol.75 (1), p.50-62
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_733335058
source Springer Nature
subjects Bacillus subtilis - enzymology
Bacteria
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Cells
Chlorophenols - chemistry
Electron Transport
Enzymes
Ionophores
Kinetics
Life Sciences
Membranes
Membranes - metabolism
Microbiology
Oxidases
Oxidation
Oxidation-Reduction
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Succinic Acid - metabolism
Thermodynamics
Vitamin K 2 - metabolism
title Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energization%20of%20Bacillus%20subtilis%20membrane%20vesicles%20increases%20catalytic%20activity%20of%20succinate:%20Menaquinone%20oxidoreductase&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Azarkina,%20N.%20V.&rft.date=2010&rft.volume=75&rft.issue=1&rft.spage=50&rft.epage=62&rft.pages=50-62&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297910010074&rft_dat=%3Cgale_proqu%3EA345774878%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232411235&rft_id=info:pmid/20331424&rft_galeid=A345774878&rfr_iscdi=true