Loading…
Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase
In this work, high ΔμH + -dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis . The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing s...
Saved in:
Published in: | Biochemistry (Moscow) 2010, Vol.75 (1), p.50-62 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3 |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 50 |
container_title | Biochemistry (Moscow) |
container_volume | 75 |
creator | Azarkina, N. V. Konstantinov, A. A. |
description | In this work, high ΔμH
+
-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from
Bacillus subtilis
. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a
B. subtilis
strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent
K
m
for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the
K
m
value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH
+
for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH
+
might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH
+
could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation. |
doi_str_mv | 10.1134/S0006297910010074 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733335058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A345774878</galeid><sourcerecordid>A345774878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</originalsourceid><addsrcrecordid>eNp1kUFvFSEQx4mxsc_qB_BiNnrwtBUYWFhvtanapMaDet6w7OwLzS60wDZ9fnrZvKpp1TAJA_P7_zMwhLxg9JgxEG-_Ukob3qqWUVpCiUdkwxqqa6CCPiabtVyv9UPyNKXLcuS0hSfkkFMAJrjYkN2Zx7h1P0x2wVdhrN4b66ZpSVVa-uwml6oZ5z4aj9UNJmcnTJXzNqJJJbMmm2mXna2Mze7G5d3qkRZrnTcZ31Wf0ZvrxflQ9OHWDSHisNhcxM_IwWimhM_v9iPy_cPZt9NP9cWXj-enJxe1FaByrSkvAaxtGhiVhEHKASSOyvSoNbNM016YQZVEARjdSCPbUbOWShQAPRyRN3vfqxiuF0y5m12yOE3lSWFJXVEBSCp1IV89IC_DEn1pruPABWMcZIFe76GtmbBzfgw5GrtadicgpFJCq9Xq-B9UWQPOzpbPGF25vydge4GNIaWIY3cV3WzirmO0W4fd_TXsonl51-_Szzj8VvyabgH4Hkil5LcY_zzo_64_Aemispo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232411235</pqid></control><display><type>article</type><title>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</title><source>Springer Nature</source><creator>Azarkina, N. V. ; Konstantinov, A. A.</creator><creatorcontrib>Azarkina, N. V. ; Konstantinov, A. A.</creatorcontrib><description>In this work, high ΔμH
+
-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from
Bacillus subtilis
. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a
B. subtilis
strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent
K
m
for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the
K
m
value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH
+
for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH
+
might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH
+
could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297910010074</identifier><identifier>PMID: 20331424</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Bacillus subtilis - enzymology ; Bacteria ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Cells ; Chlorophenols - chemistry ; Electron Transport ; Enzymes ; Ionophores ; Kinetics ; Life Sciences ; Membranes ; Membranes - metabolism ; Microbiology ; Oxidases ; Oxidation ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Succinic Acid - metabolism ; Thermodynamics ; Vitamin K 2 - metabolism</subject><ispartof>Biochemistry (Moscow), 2010, Vol.75 (1), p.50-62</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</citedby><cites>FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20331424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azarkina, N. V.</creatorcontrib><creatorcontrib>Konstantinov, A. A.</creatorcontrib><title>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>In this work, high ΔμH
+
-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from
Bacillus subtilis
. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a
B. subtilis
strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent
K
m
for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the
K
m
value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH
+
for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH
+
might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH
+
could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.</description><subject>Bacillus subtilis - enzymology</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Cells</subject><subject>Chlorophenols - chemistry</subject><subject>Electron Transport</subject><subject>Enzymes</subject><subject>Ionophores</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Membranes - metabolism</subject><subject>Microbiology</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Succinic Acid - metabolism</subject><subject>Thermodynamics</subject><subject>Vitamin K 2 - metabolism</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvFSEQx4mxsc_qB_BiNnrwtBUYWFhvtanapMaDet6w7OwLzS60wDZ9fnrZvKpp1TAJA_P7_zMwhLxg9JgxEG-_Ukob3qqWUVpCiUdkwxqqa6CCPiabtVyv9UPyNKXLcuS0hSfkkFMAJrjYkN2Zx7h1P0x2wVdhrN4b66ZpSVVa-uwml6oZ5z4aj9UNJmcnTJXzNqJJJbMmm2mXna2Mze7G5d3qkRZrnTcZ31Wf0ZvrxflQ9OHWDSHisNhcxM_IwWimhM_v9iPy_cPZt9NP9cWXj-enJxe1FaByrSkvAaxtGhiVhEHKASSOyvSoNbNM016YQZVEARjdSCPbUbOWShQAPRyRN3vfqxiuF0y5m12yOE3lSWFJXVEBSCp1IV89IC_DEn1pruPABWMcZIFe76GtmbBzfgw5GrtadicgpFJCq9Xq-B9UWQPOzpbPGF25vydge4GNIaWIY3cV3WzirmO0W4fd_TXsonl51-_Szzj8VvyabgH4Hkil5LcY_zzo_64_Aemispo</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Azarkina, N. V.</creator><creator>Konstantinov, A. A.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</title><author>Azarkina, N. V. ; Konstantinov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacillus subtilis - enzymology</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Cells</topic><topic>Chlorophenols - chemistry</topic><topic>Electron Transport</topic><topic>Enzymes</topic><topic>Ionophores</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Membranes - metabolism</topic><topic>Microbiology</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Succinic Acid - metabolism</topic><topic>Thermodynamics</topic><topic>Vitamin K 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azarkina, N. V.</creatorcontrib><creatorcontrib>Konstantinov, A. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azarkina, N. V.</au><au>Konstantinov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2010</date><risdate>2010</risdate><volume>75</volume><issue>1</issue><spage>50</spage><epage>62</epage><pages>50-62</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>In this work, high ΔμH
+
-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from
Bacillus subtilis
. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a
B. subtilis
strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent
K
m
for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the
K
m
value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH
+
for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH
+
might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH
+
could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><pmid>20331424</pmid><doi>10.1134/S0006297910010074</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2010, Vol.75 (1), p.50-62 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_733335058 |
source | Springer Nature |
subjects | Bacillus subtilis - enzymology Bacteria Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Cells Chlorophenols - chemistry Electron Transport Enzymes Ionophores Kinetics Life Sciences Membranes Membranes - metabolism Microbiology Oxidases Oxidation Oxidation-Reduction Oxidoreductases - chemistry Oxidoreductases - metabolism Succinic Acid - metabolism Thermodynamics Vitamin K 2 - metabolism |
title | Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energization%20of%20Bacillus%20subtilis%20membrane%20vesicles%20increases%20catalytic%20activity%20of%20succinate:%20Menaquinone%20oxidoreductase&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Azarkina,%20N.%20V.&rft.date=2010&rft.volume=75&rft.issue=1&rft.spage=50&rft.epage=62&rft.pages=50-62&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297910010074&rft_dat=%3Cgale_proqu%3EA345774878%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-802802319663f753d55d35ef7abe881c180b4ad7c18733a865a59f81905e433b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232411235&rft_id=info:pmid/20331424&rft_galeid=A345774878&rfr_iscdi=true |