Loading…
A method for correcting the effect of specimen drift on coherent diffractive imaging
Coherent diffractive imaging involves the inversion of a diffraction pattern to find the wave function at the exit-surface plane of the specimen. It is a promising technique for imaging, for example, nanoparticles with electrons and biological molecules with X-rays. If the illumination is not a plan...
Saved in:
Published in: | Ultramicroscopy 2010-03, Vol.110 (4), p.359-365 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coherent diffractive imaging involves the inversion of a diffraction pattern to find the wave function at the exit-surface plane of the specimen. It is a promising technique for imaging, for example, nanoparticles with electrons and biological molecules with X-rays. If the illumination is not a plane wave of infinite extent, then a relative drift between the illumination and the object introduces errors into the diffraction pattern; an issue which is often overlooked. This may be of particular importance for applications with electron microscopes which use nanoscale probes. Here we show that beams which are uniform over a sufficiently large region can be used to pose a phase retrieval problem that is immune from specimen drift, provided suitable analysis of the diffraction data is undertaken. The method only applies to objects contained within a support that is smaller than a uniform region of the beam. |
---|---|
ISSN: | 0304-3991 1879-2723 |
DOI: | 10.1016/j.ultramic.2010.01.014 |