Loading…

A method for correcting the effect of specimen drift on coherent diffractive imaging

Coherent diffractive imaging involves the inversion of a diffraction pattern to find the wave function at the exit-surface plane of the specimen. It is a promising technique for imaging, for example, nanoparticles with electrons and biological molecules with X-rays. If the illumination is not a plan...

Full description

Saved in:
Bibliographic Details
Published in:Ultramicroscopy 2010-03, Vol.110 (4), p.359-365
Main Authors: Martin, A.V., Allen, L.J., Ishizuka, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coherent diffractive imaging involves the inversion of a diffraction pattern to find the wave function at the exit-surface plane of the specimen. It is a promising technique for imaging, for example, nanoparticles with electrons and biological molecules with X-rays. If the illumination is not a plane wave of infinite extent, then a relative drift between the illumination and the object introduces errors into the diffraction pattern; an issue which is often overlooked. This may be of particular importance for applications with electron microscopes which use nanoscale probes. Here we show that beams which are uniform over a sufficiently large region can be used to pose a phase retrieval problem that is immune from specimen drift, provided suitable analysis of the diffraction data is undertaken. The method only applies to objects contained within a support that is smaller than a uniform region of the beam.
ISSN:0304-3991
1879-2723
DOI:10.1016/j.ultramic.2010.01.014