Loading…
Asymmetric self-phase modulation and compression of short laser pulses in plasma channels
A relativistically intense femtosecond laser pulse propagating in a plasma channel undergoes dramatic photon deceleration while propagating a distance on the order of a dephasing length. The deceleration of photons is localized to the back of the pulse and is accompanied by compression and explosive...
Saved in:
Published in: | Physical review letters 2003-05, Vol.90 (21), p.215001-215001, Article 215001 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A relativistically intense femtosecond laser pulse propagating in a plasma channel undergoes dramatic photon deceleration while propagating a distance on the order of a dephasing length. The deceleration of photons is localized to the back of the pulse and is accompanied by compression and explosive growth of the ponderomotive potential. Fully explicit particle-in-cell simulations are applied to the problem and are compared with ponderomotive guiding center simulations. A numerical Wigner transform is used to examine local frequency shifts within the pulse and to suggest an experimental diagnostic of plasma waves inside a capillary. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.90.215001 |