Loading…
Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications
Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the roll...
Saved in:
Published in: | ACS nano 2010-06, Vol.4 (6), p.3123-3130 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13 |
---|---|
cites | cdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13 |
container_end_page | 3130 |
container_issue | 6 |
container_start_page | 3123 |
container_title | ACS nano |
container_volume | 4 |
creator | Huang, Gaoshan Bolaños Quiñones, Vladimir A Ding, Fei Kiravittaya, Suwit Mei, Yongfeng Schmidt, Oliver G |
description | Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems. |
doi_str_mv | 10.1021/nn100456r |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733374204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733374204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</originalsourceid><addsrcrecordid>eNptkM9LwzAYhoMoOqcH_wHJRcRDNWmapD3KmD9gIuiG3kqafNuiWVqbVvG_N7K5k6fv_eDhgfdF6ISSS0pSeuU9JSTjot1BA1owkZBcvO5uM6cH6DCEN0K4zKXYRwcp4amUhRwg91Q7ByaZNfix6axWDj9Y3dZafdrOQsBftlvi5776Up_gwC_i96Kcw9Ol1e8eQojMvG7x2C-V12DwxH701uBn8MH6Bb5uGhe1na19OEJ7c-UCHG_uEM1uxtPRXTJ5vL0fXU8SxWjWJbmo5kxIoFKzjFFCM851IQUxAnKe57mQhihegKmU4aBIyoo8NSnnQgmoKBui87W3aeuPHkJXrmzQ4JzyUPehlIwxmaUki-TFmoyVQ2hhXjatXan2u6Sk_N223G4b2dONta9WYLbk35gROFsDSofyre5bH0v-I_oBa3GBCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733374204</pqid></control><display><type>article</type><title>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Gaoshan ; Bolaños Quiñones, Vladimir A ; Ding, Fei ; Kiravittaya, Suwit ; Mei, Yongfeng ; Schmidt, Oliver G</creator><creatorcontrib>Huang, Gaoshan ; Bolaños Quiñones, Vladimir A ; Ding, Fei ; Kiravittaya, Suwit ; Mei, Yongfeng ; Schmidt, Oliver G</creatorcontrib><description>Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100456r</identifier><identifier>PMID: 20527797</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallization - methods ; Equipment Design ; Equipment Failure Analysis ; Membranes, Artificial ; Microfluidic Analytical Techniques - instrumentation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Optical Devices ; Particle Size ; Refractometry - instrumentation ; Solutions - analysis ; Solutions - chemistry ; Transducers</subject><ispartof>ACS nano, 2010-06, Vol.4 (6), p.3123-3130</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</citedby><cites>FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20527797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Gaoshan</creatorcontrib><creatorcontrib>Bolaños Quiñones, Vladimir A</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Kiravittaya, Suwit</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><creatorcontrib>Schmidt, Oliver G</creatorcontrib><title>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.</description><subject>Crystallization - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Membranes, Artificial</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Optical Devices</subject><subject>Particle Size</subject><subject>Refractometry - instrumentation</subject><subject>Solutions - analysis</subject><subject>Solutions - chemistry</subject><subject>Transducers</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM9LwzAYhoMoOqcH_wHJRcRDNWmapD3KmD9gIuiG3kqafNuiWVqbVvG_N7K5k6fv_eDhgfdF6ISSS0pSeuU9JSTjot1BA1owkZBcvO5uM6cH6DCEN0K4zKXYRwcp4amUhRwg91Q7ByaZNfix6axWDj9Y3dZafdrOQsBftlvi5776Up_gwC_i96Kcw9Ol1e8eQojMvG7x2C-V12DwxH701uBn8MH6Bb5uGhe1na19OEJ7c-UCHG_uEM1uxtPRXTJ5vL0fXU8SxWjWJbmo5kxIoFKzjFFCM851IQUxAnKe57mQhihegKmU4aBIyoo8NSnnQgmoKBui87W3aeuPHkJXrmzQ4JzyUPehlIwxmaUki-TFmoyVQ2hhXjatXan2u6Sk_N223G4b2dONta9WYLbk35gROFsDSofyre5bH0v-I_oBa3GBCw</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Huang, Gaoshan</creator><creator>Bolaños Quiñones, Vladimir A</creator><creator>Ding, Fei</creator><creator>Kiravittaya, Suwit</creator><creator>Mei, Yongfeng</creator><creator>Schmidt, Oliver G</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100622</creationdate><title>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</title><author>Huang, Gaoshan ; Bolaños Quiñones, Vladimir A ; Ding, Fei ; Kiravittaya, Suwit ; Mei, Yongfeng ; Schmidt, Oliver G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crystallization - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Membranes, Artificial</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Optical Devices</topic><topic>Particle Size</topic><topic>Refractometry - instrumentation</topic><topic>Solutions - analysis</topic><topic>Solutions - chemistry</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Gaoshan</creatorcontrib><creatorcontrib>Bolaños Quiñones, Vladimir A</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Kiravittaya, Suwit</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><creatorcontrib>Schmidt, Oliver G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Gaoshan</au><au>Bolaños Quiñones, Vladimir A</au><au>Ding, Fei</au><au>Kiravittaya, Suwit</au><au>Mei, Yongfeng</au><au>Schmidt, Oliver G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>3123</spage><epage>3130</epage><pages>3123-3130</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20527797</pmid><doi>10.1021/nn100456r</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2010-06, Vol.4 (6), p.3123-3130 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_733374204 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Crystallization - methods Equipment Design Equipment Failure Analysis Membranes, Artificial Microfluidic Analytical Techniques - instrumentation Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Optical Devices Particle Size Refractometry - instrumentation Solutions - analysis Solutions - chemistry Transducers |
title | Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolled-Up%20Optical%20Microcavities%20with%20Subwavelength%20Wall%20Thicknesses%20for%20Enhanced%20Liquid%20Sensing%20Applications&rft.jtitle=ACS%20nano&rft.au=Huang,%20Gaoshan&rft.date=2010-06-22&rft.volume=4&rft.issue=6&rft.spage=3123&rft.epage=3130&rft.pages=3123-3130&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100456r&rft_dat=%3Cproquest_cross%3E733374204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733374204&rft_id=info:pmid/20527797&rfr_iscdi=true |