Loading…

Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications

Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the roll...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2010-06, Vol.4 (6), p.3123-3130
Main Authors: Huang, Gaoshan, Bolaños Quiñones, Vladimir A, Ding, Fei, Kiravittaya, Suwit, Mei, Yongfeng, Schmidt, Oliver G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13
cites cdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13
container_end_page 3130
container_issue 6
container_start_page 3123
container_title ACS nano
container_volume 4
creator Huang, Gaoshan
Bolaños Quiñones, Vladimir A
Ding, Fei
Kiravittaya, Suwit
Mei, Yongfeng
Schmidt, Oliver G
description Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.
doi_str_mv 10.1021/nn100456r
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733374204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733374204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</originalsourceid><addsrcrecordid>eNptkM9LwzAYhoMoOqcH_wHJRcRDNWmapD3KmD9gIuiG3kqafNuiWVqbVvG_N7K5k6fv_eDhgfdF6ISSS0pSeuU9JSTjot1BA1owkZBcvO5uM6cH6DCEN0K4zKXYRwcp4amUhRwg91Q7ByaZNfix6axWDj9Y3dZafdrOQsBftlvi5776Up_gwC_i96Kcw9Ol1e8eQojMvG7x2C-V12DwxH701uBn8MH6Bb5uGhe1na19OEJ7c-UCHG_uEM1uxtPRXTJ5vL0fXU8SxWjWJbmo5kxIoFKzjFFCM851IQUxAnKe57mQhihegKmU4aBIyoo8NSnnQgmoKBui87W3aeuPHkJXrmzQ4JzyUPehlIwxmaUki-TFmoyVQ2hhXjatXan2u6Sk_N223G4b2dONta9WYLbk35gROFsDSofyre5bH0v-I_oBa3GBCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733374204</pqid></control><display><type>article</type><title>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Gaoshan ; Bolaños Quiñones, Vladimir A ; Ding, Fei ; Kiravittaya, Suwit ; Mei, Yongfeng ; Schmidt, Oliver G</creator><creatorcontrib>Huang, Gaoshan ; Bolaños Quiñones, Vladimir A ; Ding, Fei ; Kiravittaya, Suwit ; Mei, Yongfeng ; Schmidt, Oliver G</creatorcontrib><description>Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100456r</identifier><identifier>PMID: 20527797</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallization - methods ; Equipment Design ; Equipment Failure Analysis ; Membranes, Artificial ; Microfluidic Analytical Techniques - instrumentation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Optical Devices ; Particle Size ; Refractometry - instrumentation ; Solutions - analysis ; Solutions - chemistry ; Transducers</subject><ispartof>ACS nano, 2010-06, Vol.4 (6), p.3123-3130</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</citedby><cites>FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20527797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Gaoshan</creatorcontrib><creatorcontrib>Bolaños Quiñones, Vladimir A</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Kiravittaya, Suwit</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><creatorcontrib>Schmidt, Oliver G</creatorcontrib><title>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.</description><subject>Crystallization - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Membranes, Artificial</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Optical Devices</subject><subject>Particle Size</subject><subject>Refractometry - instrumentation</subject><subject>Solutions - analysis</subject><subject>Solutions - chemistry</subject><subject>Transducers</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM9LwzAYhoMoOqcH_wHJRcRDNWmapD3KmD9gIuiG3kqafNuiWVqbVvG_N7K5k6fv_eDhgfdF6ISSS0pSeuU9JSTjot1BA1owkZBcvO5uM6cH6DCEN0K4zKXYRwcp4amUhRwg91Q7ByaZNfix6axWDj9Y3dZafdrOQsBftlvi5776Up_gwC_i96Kcw9Ol1e8eQojMvG7x2C-V12DwxH701uBn8MH6Bb5uGhe1na19OEJ7c-UCHG_uEM1uxtPRXTJ5vL0fXU8SxWjWJbmo5kxIoFKzjFFCM851IQUxAnKe57mQhihegKmU4aBIyoo8NSnnQgmoKBui87W3aeuPHkJXrmzQ4JzyUPehlIwxmaUki-TFmoyVQ2hhXjatXan2u6Sk_N223G4b2dONta9WYLbk35gROFsDSofyre5bH0v-I_oBa3GBCw</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Huang, Gaoshan</creator><creator>Bolaños Quiñones, Vladimir A</creator><creator>Ding, Fei</creator><creator>Kiravittaya, Suwit</creator><creator>Mei, Yongfeng</creator><creator>Schmidt, Oliver G</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100622</creationdate><title>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</title><author>Huang, Gaoshan ; Bolaños Quiñones, Vladimir A ; Ding, Fei ; Kiravittaya, Suwit ; Mei, Yongfeng ; Schmidt, Oliver G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crystallization - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Membranes, Artificial</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Optical Devices</topic><topic>Particle Size</topic><topic>Refractometry - instrumentation</topic><topic>Solutions - analysis</topic><topic>Solutions - chemistry</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Gaoshan</creatorcontrib><creatorcontrib>Bolaños Quiñones, Vladimir A</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Kiravittaya, Suwit</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><creatorcontrib>Schmidt, Oliver G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Gaoshan</au><au>Bolaños Quiñones, Vladimir A</au><au>Ding, Fei</au><au>Kiravittaya, Suwit</au><au>Mei, Yongfeng</au><au>Schmidt, Oliver G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>3123</spage><epage>3130</epage><pages>3123-3130</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO2 bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20527797</pmid><doi>10.1021/nn100456r</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2010-06, Vol.4 (6), p.3123-3130
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_733374204
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Crystallization - methods
Equipment Design
Equipment Failure Analysis
Membranes, Artificial
Microfluidic Analytical Techniques - instrumentation
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - instrumentation
Optical Devices
Particle Size
Refractometry - instrumentation
Solutions - analysis
Solutions - chemistry
Transducers
title Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolled-Up%20Optical%20Microcavities%20with%20Subwavelength%20Wall%20Thicknesses%20for%20Enhanced%20Liquid%20Sensing%20Applications&rft.jtitle=ACS%20nano&rft.au=Huang,%20Gaoshan&rft.date=2010-06-22&rft.volume=4&rft.issue=6&rft.spage=3123&rft.epage=3130&rft.pages=3123-3130&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100456r&rft_dat=%3Cproquest_cross%3E733374204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a314t-86bf367e17c343101455c9760d6e8588867d0a59edbad5ea023982d2556a6eb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733374204&rft_id=info:pmid/20527797&rfr_iscdi=true