Loading…

Stochastic modeling approach to the incubation time of prionic diseases

Transmissible spongiform encephalopathies are neurodegenerative diseases for which prions are the attributed pathogenic agents. A widely accepted theory assumes that prion replication is due to a direct interaction between the pathologic (PrP(Sc)) form and the host-encoded (PrP(C)) conformation, in...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2003-05, Vol.90 (19), p.198101-198101, Article 198101
Main Authors: Ferreira, A S, da Silva, M A A, Cressoni, J C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transmissible spongiform encephalopathies are neurodegenerative diseases for which prions are the attributed pathogenic agents. A widely accepted theory assumes that prion replication is due to a direct interaction between the pathologic (PrP(Sc)) form and the host-encoded (PrP(C)) conformation, in a kind of autocatalytic process. Here we show that the overall features of the incubation time of prion diseases are readily obtained if the prion reaction is described by a simple mean-field model. An analytical expression for the incubation time distribution then follows by associating the rate constant to a stochastic variable log normally distributed. The incubation time distribution is then also shown to be log normal and fits the observed BSE (bovine spongiform encephalopathy) data very well. Computer simulation results also yield the correct BSE incubation time distribution at low PrP(C) densities.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.90.198101