Loading…

Potentiostatic Control of Ionic Liquid Surface Film Formation on ZE41 Magnesium Alloy

The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition ∼4 wt % Zn, ∼1.7 wt % RE (Ce), ∼0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2010-05, Vol.2 (5), p.1317-1323
Main Authors: Efthimiadis, Jim, Neil, Wayne C, Bunter, Andrew, Howlett, Patrick C, Hinton, Bruce R. W, MacFarlane, Douglas R, Forsyth, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition ∼4 wt % Zn, ∼1.7 wt % RE (Ce), ∼0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P6,6,6,14][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of −200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.
ISSN:1944-8244
1944-8252
DOI:10.1021/am900889n