Loading…
Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts
In bakers' yeast, an immediate alcoholic fermentation begins when a glucose pulse is added to glucose-limited, aerobically grown cells. The mechanism of this short-term Crabtree effect was investigated via a comparative enzymic analysis of eight yeast species. It was established that the fermen...
Saved in:
Published in: | Applied and Environmental Microbiology 1990-01, Vol.56 (1), p.281-287 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In bakers' yeast, an immediate alcoholic fermentation begins when a glucose pulse is added to glucose-limited, aerobically grown cells. The mechanism of this short-term Crabtree effect was investigated via a comparative enzymic analysis of eight yeast species. It was established that the fermentation rate of the organisms upon transition from glucose limitation to glucose excess is positively correlated with the level of pyruvate decarboxylase (EC 4.1.1.1). In the Crabtree-negative yeasts, the pyruvate decarboxylase activity was low and did not increase when excess glucose was added. In contrast, in the Crabtree-positive yeasts, the activity of this enzyme was on the average sixfold higher and increased after exposure to glucose excess. In Crabtree-negative species, relatively high activities of acetaldehyde dehydrogenases (EC 1.2.1.4 and EC 1.2.1.5) and acetyl coenzyme A synthetase (EC 6.2.1.1), in addition to low pyruvate decarboxylase activities, were present. Thus, in these yeasts, acetaldehyde can be effectively oxidized via a bypass that circumvents the reduction of acetaldehyde to ethanol. Growth rates of most Crabtree-positive yeasts did not increase upon transition from glucose limitation to glucose excess. In contrast, the Crabtree-negative yeasts exhibited enhanced rates of biomass production which in most cases could be ascribed to the intracellular accumulation of reserve carbohydrates. Generally, the glucose consumption rate after a glucose pulse was higher in the Crabtree-positive yeasts than in the Crabtree-negative yeasts. However, the respiratory capacities of steady-state cultures of Crabtree-positive yeasts were not significantly different from those of Crabtree-negative yeasts. Thus, a limited respiratory capacity is not the primary cause of the Crabtree effect in yeasts. Instead, the difference between Crabtree-positive and Crabtree-negative yeasts is attributed to differences in the kinetics of glucose uptake, synthesis of reserve carbohyd rates, and pyruvate metabolism |
---|---|
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/aem.56.1.281-287.1990 |