Loading…
Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryos
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI du...
Saved in:
Published in: | Molecular reproduction and development 2010-07, Vol.77 (7), p.615-621 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre‐implantation bovine embryo development by characterizing the allele‐specific expression pattern of the X chromosome‐linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4‐, 8‐ to 16‐cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT‐PCR‐RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele‐specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4‐, 8‐ to 16‐cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele‐specific expression of an X‐linked gene that is subject to XCI in in vitro bovine embryos from the 4‐cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. Mol. Reprod. Dev. 77: 615–621, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1040-452X 1098-2795 |
DOI: | 10.1002/mrd.21192 |