Loading…

Subcellular localization of a UDP-glucose:aldehyde cyanohydrin beta-glucosyl transferase in epidermal plastids of Sorghum leaf blades [Sorghum bicolor]

Epidermal and mesophyll protoplasts, prepared from leaf blades of 6-day-old light-grown Sorghum bicolor seedlings were separated by differential sedimentation and assayed for a number of enzymes. The epidermal protoplasts contained higher levels of NADPH-cytochrome c reductase (EC 1.6.2.4), triose p...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1982-12, Vol.70 (6), p.1732-1737
Main Authors: Wurtele, Eve Syrkin, Susan S. Thayer, Conn, Eric E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epidermal and mesophyll protoplasts, prepared from leaf blades of 6-day-old light-grown Sorghum bicolor seedlings were separated by differential sedimentation and assayed for a number of enzymes. The epidermal protoplasts contained higher levels of NADPH-cytochrome c reductase (EC 1.6.2.4), triose phosphate isomerase (EC 5.3.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.31), and a UDP-glucose:cyanohydrin β-glucosyl transferase (EC 2.4.1.85), but lower levels of NADP+ triosephosphate dehydrogenase (EC 1.2.1.13) than did mesophyll protoplasts. When protoplast preparations were lysed and applied to linear sucrose density gradients, triosephosphate isomerase was found to be present in epidermal plastids. A significant fraction (41%) of the glucosyl transferase activity was also associated with the epidermal plastids.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.70.6.1732