Loading…
Auxin Regulation of a Proton Translocating ATPase in Pea Root Plasma Membrane Vesicles
Pea root microsomal vesicles have been fractionated on a Dextran step gradient to give three fractions, each of which carries out ATP-dependent proton accumulation as measured by fluorescence quenching of quinacrine. The fraction at the 4/6% Dextran interface is enriched in plasma membrane, as deter...
Saved in:
Published in: | Plant physiology (Bethesda) 1985-12, Vol.79 (4), p.1080-1085 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pea root microsomal vesicles have been fractionated on a Dextran step gradient to give three fractions, each of which carries out ATP-dependent proton accumulation as measured by fluorescence quenching of quinacrine. The fraction at the 4/6% Dextran interface is enriched in plasma membrane, as determined by UDPG sterol glucosyltransferase and vanadate-inhibited ATPase. The vanadate-sensitive phosphohydrolase is not specific for ATP, has a Km of about 0.23 millimolar for MgATP, is only slightly affected by K+ or Cl- and is insensitive to auxin. Proton transport, on the other hand, is more specific for ATP, enhanced by anions (NO3
- > Cl-) and has a Km of about 0.7 millimolar. Auxins decrease the Km to about 0.35 millimolar, with no significant effect on the Vmax, while antiauxins or weak acids have no such effect. It appears that auxin has the ability to alter the efficiency of the ATP-driven proton transport. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.79.4.1080 |