Loading…
Drought- and ABA-induced changes in polypeptide and mRNA accumulation in tomato leaves
Drought stress triggers abscisic acid (ABA) biosynthesis resulting in ABA accumulation. The ABA-deficient tomato mutant, flacca (Lycopersicon esculentum Mill. cv Ailsa Craig), does not synthesize ABA in response to drought stress. This mutant has been used to distinguish polypeptides and in vitro tr...
Saved in:
Published in: | Plant physiology (Bethesda) 1988-12, Vol.88 (4), p.1210-1214 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drought stress triggers abscisic acid (ABA) biosynthesis resulting in ABA accumulation. The ABA-deficient tomato mutant, flacca (Lycopersicon esculentum Mill. cv Ailsa Craig), does not synthesize ABA in response to drought stress. This mutant has been used to distinguish polypeptides and in vitro translation products that are synthesized during drought stress in response to elevated ABA levels from those that are induced directly by altered water relations. A set of polypeptides and in vitro translation products was synthesized during drought stress in the wild type. These polypeptides and in vitro translation products were synthesized to a lesser extent in the drought-stressed ABA-deficient mutant. Treatment of flacca with ABA resulted in the synthesis of the drought-stress-induced polypeptides and in vitro translation products. These results support the hypothesis that many of the polypeptides that are synthesized during drought are regulated by alterations in ABA concentration. Similarly, the mRNA population was altered by ABA during drought stress. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.88.4.1210 |