Loading…
Bicarbonate concentration by Synechocystis PCC6803. Modulation of protein phosphorylation and inorganic carbon transport by glucose
The ability of the cyanobacterium Synechocystis PCC6803 to transport inorganic carbon in the form of bicarbonate rapidly decreased following a shift from bicarbonate-limited growth to either excess bicarbonate supply or to photoheterotrophic growth an glucose. Nonmetabolizable analogs of glucose did...
Saved in:
Published in: | Plant physiology (Bethesda) 1992-06, Vol.99 (2), p.601-606 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability of the cyanobacterium Synechocystis PCC6803 to transport inorganic carbon in the form of bicarbonate rapidly decreased following a shift from bicarbonate-limited growth to either excess bicarbonate supply or to photoheterotrophic growth an glucose. Nonmetabolizable analogs of glucose did not exert this effect. The rate at which the bicarbonate uptake rate declined was too rapid to be accounted for by dilution of the activity by culture growth and suggested that posttranslational modification may be involved. Several proteins that were unphosphorylated during bicarbonate-limited growth became phosphorylated during the shifts to high CO2 conditions and to photoheterotrophic growth. A similar alteration in the profile of phosphopolypeptides was observed following a shift into the dark. The changes in protein phosphorylation were not blocked by chloramphenicol or rifampicin |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.99.2.601 |