Loading…
Early prediction of septic shock in hospitalized patients
BACKGROUND: Hospitalized patients who develop severe sepsis have significant morbidity and mortality. Early goal‐directed therapy has been shown to decrease mortality in severe sepsis and septic shock, though a delay in recognizing impending sepsis often precludes this intervention. OBJECTIVE: To id...
Saved in:
Published in: | Journal of hospital medicine 2010-01, Vol.5 (1), p.19-25 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843 |
---|---|
cites | cdi_FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843 |
container_end_page | 25 |
container_issue | 1 |
container_start_page | 19 |
container_title | Journal of hospital medicine |
container_volume | 5 |
creator | Thiel, Steven W. Rosini, Jamie M. Shannon, William Doherty, Joshua A. Micek, Scott T. Kollef, Marin H. |
description | BACKGROUND:
Hospitalized patients who develop severe sepsis have significant morbidity and mortality. Early goal‐directed therapy has been shown to decrease mortality in severe sepsis and septic shock, though a delay in recognizing impending sepsis often precludes this intervention.
OBJECTIVE:
To identify early predictors of septic shock among hospitalized non‐intensive care unit (ICU) medical patients.
DESIGN:
Retrospective cohort analysis.
SETTING:
A 1200‐bed academic medical center.
PATIENTS:
Derivation cohort consisted of 13,785 patients hospitalized during 2005. The validation cohorts consisted of 13,737 patients during 2006 and 13,937 patients from 2007.
INTERVENTION:
Development and prospective validation of a prediction model using Recursive Partitioning And Regression Tree (RPART) analysis.
METHODS:
RPART analysis of routine laboratory and hemodynamic variables from the derivation cohort to identify predictors prior to the occurrence of shock. Two models were generated, 1 including arterial blood gas (ABG) data and 1 without.
RESULTS:
When applied to the 2006 cohort, 347 (54.7%) and 121 (19.1%) of the 635 patients developing septic shock were correctly identified by the 2 models, respectively. For the 2007 patients, the 2 models correctly identified 367 (55.0%) and 102 (15.3%) of the 667 patients developing septic shock, respectively.
CONCLUSIONS:
Readily available data can be employed to predict non‐ICU patients who develop septic shock several hours prior to ICU admission. Journal of Hospital Medicine 2010;5:19–25. © 2010 Society of Hospital Medicine. |
doi_str_mv | 10.1002/jhm.530 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733497400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733497400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843</originalsourceid><addsrcrecordid>eNp1kMtKAzEUQIMotlbxD2R2LmRqZvKYzFJLH0qrm6rgJqR50LTzMpmi9esdmbauXN174XC4HAAuI9iPIIxvV8u8TxA8At2IEBQSCunxfidp3AFn3q8gxIgRfAo6MYQUYRh3QToULtsGldPKytqWRVCawOuqtjLwy1KuA1sEy9JXthaZ_dYqqERtdVH7c3BiROb1xW72wMtoOB9Mwunz-GFwNw0lIhiGBEcJVYIsoGFJpEnCBJW6ORaxah4iSJooloqmJqWMUUwEJkYRBVlsGGIY9cB1661c-bHRvua59VJnmSh0ufE8QQinCYbwj5Su9N5pwytnc-G2PIL8NxNvMvEmU0Ne7ZybRa7Vgdt3aYCbFvi0md7-5-GPk1mrC1va-lp_HWjh1pwmKCH87WnMX9n9_H00nvMZ-gFPdX5r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733497400</pqid></control><display><type>article</type><title>Early prediction of septic shock in hospitalized patients</title><source>Wiley</source><creator>Thiel, Steven W. ; Rosini, Jamie M. ; Shannon, William ; Doherty, Joshua A. ; Micek, Scott T. ; Kollef, Marin H.</creator><creatorcontrib>Thiel, Steven W. ; Rosini, Jamie M. ; Shannon, William ; Doherty, Joshua A. ; Micek, Scott T. ; Kollef, Marin H.</creatorcontrib><description>BACKGROUND:
Hospitalized patients who develop severe sepsis have significant morbidity and mortality. Early goal‐directed therapy has been shown to decrease mortality in severe sepsis and septic shock, though a delay in recognizing impending sepsis often precludes this intervention.
OBJECTIVE:
To identify early predictors of septic shock among hospitalized non‐intensive care unit (ICU) medical patients.
DESIGN:
Retrospective cohort analysis.
SETTING:
A 1200‐bed academic medical center.
PATIENTS:
Derivation cohort consisted of 13,785 patients hospitalized during 2005. The validation cohorts consisted of 13,737 patients during 2006 and 13,937 patients from 2007.
INTERVENTION:
Development and prospective validation of a prediction model using Recursive Partitioning And Regression Tree (RPART) analysis.
METHODS:
RPART analysis of routine laboratory and hemodynamic variables from the derivation cohort to identify predictors prior to the occurrence of shock. Two models were generated, 1 including arterial blood gas (ABG) data and 1 without.
RESULTS:
When applied to the 2006 cohort, 347 (54.7%) and 121 (19.1%) of the 635 patients developing septic shock were correctly identified by the 2 models, respectively. For the 2007 patients, the 2 models correctly identified 367 (55.0%) and 102 (15.3%) of the 667 patients developing septic shock, respectively.
CONCLUSIONS:
Readily available data can be employed to predict non‐ICU patients who develop septic shock several hours prior to ICU admission. Journal of Hospital Medicine 2010;5:19–25. © 2010 Society of Hospital Medicine.</description><identifier>ISSN: 1553-5592</identifier><identifier>EISSN: 1553-5606</identifier><identifier>DOI: 10.1002/jhm.530</identifier><identifier>PMID: 20063402</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Academic Medical Centers ; Biomarkers ; Cohort Studies ; Early Diagnosis ; Hospitalization ; Humans ; Missouri ; Models, Theoretical ; prediction ; Predictive Value of Tests ; Retrospective Studies ; Risk Assessment - methods ; sepsis ; shock ; Shock, Septic - diagnosis ; Shock, Septic - etiology</subject><ispartof>Journal of hospital medicine, 2010-01, Vol.5 (1), p.19-25</ispartof><rights>Copyright © 2010 Society of Hospital Medicine</rights><rights>(c) 2010 Society of Hospital Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843</citedby><cites>FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20063402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiel, Steven W.</creatorcontrib><creatorcontrib>Rosini, Jamie M.</creatorcontrib><creatorcontrib>Shannon, William</creatorcontrib><creatorcontrib>Doherty, Joshua A.</creatorcontrib><creatorcontrib>Micek, Scott T.</creatorcontrib><creatorcontrib>Kollef, Marin H.</creatorcontrib><title>Early prediction of septic shock in hospitalized patients</title><title>Journal of hospital medicine</title><addtitle>J. Hosp. Med</addtitle><description>BACKGROUND:
Hospitalized patients who develop severe sepsis have significant morbidity and mortality. Early goal‐directed therapy has been shown to decrease mortality in severe sepsis and septic shock, though a delay in recognizing impending sepsis often precludes this intervention.
OBJECTIVE:
To identify early predictors of septic shock among hospitalized non‐intensive care unit (ICU) medical patients.
DESIGN:
Retrospective cohort analysis.
SETTING:
A 1200‐bed academic medical center.
PATIENTS:
Derivation cohort consisted of 13,785 patients hospitalized during 2005. The validation cohorts consisted of 13,737 patients during 2006 and 13,937 patients from 2007.
INTERVENTION:
Development and prospective validation of a prediction model using Recursive Partitioning And Regression Tree (RPART) analysis.
METHODS:
RPART analysis of routine laboratory and hemodynamic variables from the derivation cohort to identify predictors prior to the occurrence of shock. Two models were generated, 1 including arterial blood gas (ABG) data and 1 without.
RESULTS:
When applied to the 2006 cohort, 347 (54.7%) and 121 (19.1%) of the 635 patients developing septic shock were correctly identified by the 2 models, respectively. For the 2007 patients, the 2 models correctly identified 367 (55.0%) and 102 (15.3%) of the 667 patients developing septic shock, respectively.
CONCLUSIONS:
Readily available data can be employed to predict non‐ICU patients who develop septic shock several hours prior to ICU admission. Journal of Hospital Medicine 2010;5:19–25. © 2010 Society of Hospital Medicine.</description><subject>Academic Medical Centers</subject><subject>Biomarkers</subject><subject>Cohort Studies</subject><subject>Early Diagnosis</subject><subject>Hospitalization</subject><subject>Humans</subject><subject>Missouri</subject><subject>Models, Theoretical</subject><subject>prediction</subject><subject>Predictive Value of Tests</subject><subject>Retrospective Studies</subject><subject>Risk Assessment - methods</subject><subject>sepsis</subject><subject>shock</subject><subject>Shock, Septic - diagnosis</subject><subject>Shock, Septic - etiology</subject><issn>1553-5592</issn><issn>1553-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUQIMotlbxD2R2LmRqZvKYzFJLH0qrm6rgJqR50LTzMpmi9esdmbauXN174XC4HAAuI9iPIIxvV8u8TxA8At2IEBQSCunxfidp3AFn3q8gxIgRfAo6MYQUYRh3QToULtsGldPKytqWRVCawOuqtjLwy1KuA1sEy9JXthaZ_dYqqERtdVH7c3BiROb1xW72wMtoOB9Mwunz-GFwNw0lIhiGBEcJVYIsoGFJpEnCBJW6ORaxah4iSJooloqmJqWMUUwEJkYRBVlsGGIY9cB1661c-bHRvua59VJnmSh0ufE8QQinCYbwj5Su9N5pwytnc-G2PIL8NxNvMvEmU0Ne7ZybRa7Vgdt3aYCbFvi0md7-5-GPk1mrC1va-lp_HWjh1pwmKCH87WnMX9n9_H00nvMZ-gFPdX5r</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Thiel, Steven W.</creator><creator>Rosini, Jamie M.</creator><creator>Shannon, William</creator><creator>Doherty, Joshua A.</creator><creator>Micek, Scott T.</creator><creator>Kollef, Marin H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201001</creationdate><title>Early prediction of septic shock in hospitalized patients</title><author>Thiel, Steven W. ; Rosini, Jamie M. ; Shannon, William ; Doherty, Joshua A. ; Micek, Scott T. ; Kollef, Marin H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Academic Medical Centers</topic><topic>Biomarkers</topic><topic>Cohort Studies</topic><topic>Early Diagnosis</topic><topic>Hospitalization</topic><topic>Humans</topic><topic>Missouri</topic><topic>Models, Theoretical</topic><topic>prediction</topic><topic>Predictive Value of Tests</topic><topic>Retrospective Studies</topic><topic>Risk Assessment - methods</topic><topic>sepsis</topic><topic>shock</topic><topic>Shock, Septic - diagnosis</topic><topic>Shock, Septic - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiel, Steven W.</creatorcontrib><creatorcontrib>Rosini, Jamie M.</creatorcontrib><creatorcontrib>Shannon, William</creatorcontrib><creatorcontrib>Doherty, Joshua A.</creatorcontrib><creatorcontrib>Micek, Scott T.</creatorcontrib><creatorcontrib>Kollef, Marin H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hospital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiel, Steven W.</au><au>Rosini, Jamie M.</au><au>Shannon, William</au><au>Doherty, Joshua A.</au><au>Micek, Scott T.</au><au>Kollef, Marin H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early prediction of septic shock in hospitalized patients</atitle><jtitle>Journal of hospital medicine</jtitle><addtitle>J. Hosp. Med</addtitle><date>2010-01</date><risdate>2010</risdate><volume>5</volume><issue>1</issue><spage>19</spage><epage>25</epage><pages>19-25</pages><issn>1553-5592</issn><eissn>1553-5606</eissn><abstract>BACKGROUND:
Hospitalized patients who develop severe sepsis have significant morbidity and mortality. Early goal‐directed therapy has been shown to decrease mortality in severe sepsis and septic shock, though a delay in recognizing impending sepsis often precludes this intervention.
OBJECTIVE:
To identify early predictors of septic shock among hospitalized non‐intensive care unit (ICU) medical patients.
DESIGN:
Retrospective cohort analysis.
SETTING:
A 1200‐bed academic medical center.
PATIENTS:
Derivation cohort consisted of 13,785 patients hospitalized during 2005. The validation cohorts consisted of 13,737 patients during 2006 and 13,937 patients from 2007.
INTERVENTION:
Development and prospective validation of a prediction model using Recursive Partitioning And Regression Tree (RPART) analysis.
METHODS:
RPART analysis of routine laboratory and hemodynamic variables from the derivation cohort to identify predictors prior to the occurrence of shock. Two models were generated, 1 including arterial blood gas (ABG) data and 1 without.
RESULTS:
When applied to the 2006 cohort, 347 (54.7%) and 121 (19.1%) of the 635 patients developing septic shock were correctly identified by the 2 models, respectively. For the 2007 patients, the 2 models correctly identified 367 (55.0%) and 102 (15.3%) of the 667 patients developing septic shock, respectively.
CONCLUSIONS:
Readily available data can be employed to predict non‐ICU patients who develop septic shock several hours prior to ICU admission. Journal of Hospital Medicine 2010;5:19–25. © 2010 Society of Hospital Medicine.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20063402</pmid><doi>10.1002/jhm.530</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-5592 |
ispartof | Journal of hospital medicine, 2010-01, Vol.5 (1), p.19-25 |
issn | 1553-5592 1553-5606 |
language | eng |
recordid | cdi_proquest_miscellaneous_733497400 |
source | Wiley |
subjects | Academic Medical Centers Biomarkers Cohort Studies Early Diagnosis Hospitalization Humans Missouri Models, Theoretical prediction Predictive Value of Tests Retrospective Studies Risk Assessment - methods sepsis shock Shock, Septic - diagnosis Shock, Septic - etiology |
title | Early prediction of septic shock in hospitalized patients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20prediction%20of%20septic%20shock%20in%20hospitalized%20patients&rft.jtitle=Journal%20of%20hospital%20medicine&rft.au=Thiel,%20Steven%20W.&rft.date=2010-01&rft.volume=5&rft.issue=1&rft.spage=19&rft.epage=25&rft.pages=19-25&rft.issn=1553-5592&rft.eissn=1553-5606&rft_id=info:doi/10.1002/jhm.530&rft_dat=%3Cproquest_cross%3E733497400%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3540-54176da5b0f871e578a6ce0f8b2d00453cf12cd69f9688645a45fd5d082f83843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733497400&rft_id=info:pmid/20063402&rfr_iscdi=true |