Loading…

Surface Nanocrystallization for Bacterial Control

Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacter...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2010-07, Vol.26 (13), p.10930-10934
Main Authors: Yu, Bin, Lesiuk, Adam, Davis, Elisabeth, Irvin, Randall T, Li, D. Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3
cites cdi_FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3
container_end_page 10934
container_issue 13
container_start_page 10930
container_title Langmuir
container_volume 26
creator Yu, Bin
Lesiuk, Adam
Davis, Elisabeth
Irvin, Randall T
Li, D. Y
description Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.
doi_str_mv 10.1021/la100859m
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733501664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733501664</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</originalsourceid><addsrcrecordid>eNpt0DtPwzAUhmELgWgpDPwB1AUhhoAd30eouEkVDMAcHbu2lMqJi50M5dcT1NIuTGd59B3pReic4BuCS3IbgGCsuG4O0JjwEhdclfIQjbFktJBM0BE6yXmJMdaU6WM0KjGjlCg-RuS9Tx6sm75CG21a5w5CqL-hq2M79TFN78F2LtUQprPYdimGU3TkIWR3tr0T9Pn48DF7LuZvTy-zu3kBlLGuIIZqbakw4LXzSkqjmRVGGMmUxFZpYQ0nAivgzi2EZtoa5QWw0nDvSkcn6Gqzu0rxq3e5q5o6WxcCtC72uZKUckyEYIO83kibYs7J-WqV6gbSuiK4-g1U7QIN9mK72pvGLXbyr8gALrcAsoXgE7S2zntXajk0VHsHNlfL2Kd2iPHPwx_Y-3jK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733501664</pqid></control><display><type>article</type><title>Surface Nanocrystallization for Bacterial Control</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yu, Bin ; Lesiuk, Adam ; Davis, Elisabeth ; Irvin, Randall T ; Li, D. Y</creator><creatorcontrib>Yu, Bin ; Lesiuk, Adam ; Davis, Elisabeth ; Irvin, Randall T ; Li, D. Y</creatorcontrib><description>Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la100859m</identifier><identifier>PMID: 20433185</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacteria - growth &amp; development ; Bacterial Adhesion - physiology ; Biofilms - growth &amp; development ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Microscopy, Atomic Force - methods ; Peptides - chemical synthesis ; Peptides - chemistry ; Pseudomonas aeruginosa - physiology ; Stainless Steel - chemistry ; Surface Properties</subject><ispartof>Langmuir, 2010-07, Vol.26 (13), p.10930-10934</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</citedby><cites>FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22973498$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20433185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Lesiuk, Adam</creatorcontrib><creatorcontrib>Davis, Elisabeth</creatorcontrib><creatorcontrib>Irvin, Randall T</creatorcontrib><creatorcontrib>Li, D. Y</creatorcontrib><title>Surface Nanocrystallization for Bacterial Control</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.</description><subject>Bacteria - growth &amp; development</subject><subject>Bacterial Adhesion - physiology</subject><subject>Biofilms - growth &amp; development</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Stainless Steel - chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0DtPwzAUhmELgWgpDPwB1AUhhoAd30eouEkVDMAcHbu2lMqJi50M5dcT1NIuTGd59B3pReic4BuCS3IbgGCsuG4O0JjwEhdclfIQjbFktJBM0BE6yXmJMdaU6WM0KjGjlCg-RuS9Tx6sm75CG21a5w5CqL-hq2M79TFN78F2LtUQprPYdimGU3TkIWR3tr0T9Pn48DF7LuZvTy-zu3kBlLGuIIZqbakw4LXzSkqjmRVGGMmUxFZpYQ0nAivgzi2EZtoa5QWw0nDvSkcn6Gqzu0rxq3e5q5o6WxcCtC72uZKUckyEYIO83kibYs7J-WqV6gbSuiK4-g1U7QIN9mK72pvGLXbyr8gALrcAsoXgE7S2zntXajk0VHsHNlfL2Kd2iPHPwx_Y-3jK</recordid><startdate>20100706</startdate><enddate>20100706</enddate><creator>Yu, Bin</creator><creator>Lesiuk, Adam</creator><creator>Davis, Elisabeth</creator><creator>Irvin, Randall T</creator><creator>Li, D. Y</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100706</creationdate><title>Surface Nanocrystallization for Bacterial Control</title><author>Yu, Bin ; Lesiuk, Adam ; Davis, Elisabeth ; Irvin, Randall T ; Li, D. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacteria - growth &amp; development</topic><topic>Bacterial Adhesion - physiology</topic><topic>Biofilms - growth &amp; development</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Stainless Steel - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Lesiuk, Adam</creatorcontrib><creatorcontrib>Davis, Elisabeth</creatorcontrib><creatorcontrib>Irvin, Randall T</creatorcontrib><creatorcontrib>Li, D. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bin</au><au>Lesiuk, Adam</au><au>Davis, Elisabeth</au><au>Irvin, Randall T</au><au>Li, D. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Nanocrystallization for Bacterial Control</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-07-06</date><risdate>2010</risdate><volume>26</volume><issue>13</issue><spage>10930</spage><epage>10934</epage><pages>10930-10934</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20433185</pmid><doi>10.1021/la100859m</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2010-07, Vol.26 (13), p.10930-10934
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_733501664
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bacteria - growth & development
Bacterial Adhesion - physiology
Biofilms - growth & development
Chemistry
Exact sciences and technology
General and physical chemistry
Interfaces: Adsorption, Reactions, Films, Forces
Microscopy, Atomic Force - methods
Peptides - chemical synthesis
Peptides - chemistry
Pseudomonas aeruginosa - physiology
Stainless Steel - chemistry
Surface Properties
title Surface Nanocrystallization for Bacterial Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Nanocrystallization%20for%20Bacterial%20Control&rft.jtitle=Langmuir&rft.au=Yu,%20Bin&rft.date=2010-07-06&rft.volume=26&rft.issue=13&rft.spage=10930&rft.epage=10934&rft.pages=10930-10934&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la100859m&rft_dat=%3Cproquest_cross%3E733501664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733501664&rft_id=info:pmid/20433185&rfr_iscdi=true