Loading…
Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results
An improved Dual-wavelength-excitation Particle Fluorescence Spectrometer (DPFS) has been reported. It measures two fluorescence spectra excited sequentially by lasers at 263 nm and 351 nm, from single atmospheric aerosol particles in the 1-10 mum diameter size range. Here we investigate the differe...
Saved in:
Published in: | Optics express 2010-06, Vol.18 (12), p.12436-12457 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An improved Dual-wavelength-excitation Particle Fluorescence Spectrometer (DPFS) has been reported. It measures two fluorescence spectra excited sequentially by lasers at 263 nm and 351 nm, from single atmospheric aerosol particles in the 1-10 mum diameter size range. Here we investigate the different levels of discrimination capability obtained when different numbers of excitation and fluorescence-emission wavelengths are used for analysis. We a) use the DPFS to measure fluorescence spectra of Bacillus subtilis and other aerosol particles, and a 25-hour sample of atmospheric aerosol at an urban site in Maryland, USA; b) analyze the data using six different algorithms that employ different levels of detail of the measured data; and c) show that when more of the data measured by the DPFS is used, the ability to discriminate among particle types is significantly increased. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.18.012436 |