Loading…
Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches
We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with...
Saved in:
Published in: | Nano letters 2010-05, Vol.10 (5), p.1741-1746 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913 |
---|---|
cites | cdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913 |
container_end_page | 1746 |
container_issue | 5 |
container_start_page | 1741 |
container_title | Nano letters |
container_volume | 10 |
creator | Large, Nicolas Abb, Martina Aizpurua, Javier Muskens, Otto L |
description | We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices. |
doi_str_mv | 10.1021/nl1001636 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733516829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733516829</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</originalsourceid><addsrcrecordid>eNpt0E1PHDEMBuCoouKrHPoHqlwQ6mHBmUyym2MXUVppVZAK55GTSSA0k2yTTBH_nkEsy6XywT48suWXkM8MThk07CwGBsAklx_IPhMcZlKpZmc7L9o9clDKAwAoLmCX7DXQglDA94m-vk81mRT70VT_z4YnukrY255eByxDit7QXxgTxmpjRIqFLkcfeh_v6DIk84e6lOltqBlNGtZoKr1aV28w0N-Pvpp7Wz6Rjw5DsUebfkhuvl_cnP-Yra4uf55_W82wbUWdCTASJXdiznTfK6eBc9tIqTkIPZUTaJlyILiSCrVT0Fiz0Lyfa2UU44fk5HXtOqe_oy21G3wxNgSMNo2lm3MumFw0apJfX6XJqZRsXbfOfsD81DHoXgLttoFO9stm66gH22_lW4ITON4ALNPXLmM0vry7Zi4Va9p3h6Z0D2nMccriPwefAQOnidI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733516829</pqid></control><display><type>article</type><title>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Large, Nicolas ; Abb, Martina ; Aizpurua, Javier ; Muskens, Otto L</creator><creatorcontrib>Large, Nicolas ; Abb, Martina ; Aizpurua, Javier ; Muskens, Otto L</creatorcontrib><description>We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1001636</identifier><identifier>PMID: 20405903</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Computer-Aided Design ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric Conductivity ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Electronics - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Materials science ; Micro-Electrical-Mechanical Systems - instrumentation ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - instrumentation ; Nanotubes ; Optical Devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal Processing, Computer-Assisted - instrumentation ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation</subject><ispartof>Nano letters, 2010-05, Vol.10 (5), p.1741-1746</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</citedby><cites>FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22769124$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20405903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Large, Nicolas</creatorcontrib><creatorcontrib>Abb, Martina</creatorcontrib><creatorcontrib>Aizpurua, Javier</creatorcontrib><creatorcontrib>Muskens, Otto L</creatorcontrib><title>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.</description><subject>Applied sciences</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Computer-Aided Design</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric Conductivity</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotubes</subject><subject>Optical Devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1PHDEMBuCoouKrHPoHqlwQ6mHBmUyym2MXUVppVZAK55GTSSA0k2yTTBH_nkEsy6XywT48suWXkM8MThk07CwGBsAklx_IPhMcZlKpZmc7L9o9clDKAwAoLmCX7DXQglDA94m-vk81mRT70VT_z4YnukrY255eByxDit7QXxgTxmpjRIqFLkcfeh_v6DIk84e6lOltqBlNGtZoKr1aV28w0N-Pvpp7Wz6Rjw5DsUebfkhuvl_cnP-Yra4uf55_W82wbUWdCTASJXdiznTfK6eBc9tIqTkIPZUTaJlyILiSCrVT0Fiz0Lyfa2UU44fk5HXtOqe_oy21G3wxNgSMNo2lm3MumFw0apJfX6XJqZRsXbfOfsD81DHoXgLttoFO9stm66gH22_lW4ITON4ALNPXLmM0vry7Zi4Va9p3h6Z0D2nMccriPwefAQOnidI</recordid><startdate>20100512</startdate><enddate>20100512</enddate><creator>Large, Nicolas</creator><creator>Abb, Martina</creator><creator>Aizpurua, Javier</creator><creator>Muskens, Otto L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100512</creationdate><title>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</title><author>Large, Nicolas ; Abb, Martina ; Aizpurua, Javier ; Muskens, Otto L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Computer-Aided Design</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric Conductivity</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotubes</topic><topic>Optical Devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Large, Nicolas</creatorcontrib><creatorcontrib>Abb, Martina</creatorcontrib><creatorcontrib>Aizpurua, Javier</creatorcontrib><creatorcontrib>Muskens, Otto L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Large, Nicolas</au><au>Abb, Martina</au><au>Aizpurua, Javier</au><au>Muskens, Otto L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-05-12</date><risdate>2010</risdate><volume>10</volume><issue>5</issue><spage>1741</spage><epage>1746</epage><pages>1741-1746</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20405903</pmid><doi>10.1021/nl1001636</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-05, Vol.10 (5), p.1741-1746 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_733516829 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Computer-Aided Design Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electric Conductivity Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Electronics - instrumentation Equipment Design Equipment Failure Analysis Exact sciences and technology Materials science Micro-Electrical-Mechanical Systems - instrumentation Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanotechnology - instrumentation Nanotubes Optical Devices Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Signal Processing, Computer-Assisted - instrumentation Surface and interface electron states Surface Plasmon Resonance - instrumentation |
title | Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoconductively%20Loaded%20Plasmonic%20Nanoantenna%20as%20Building%20Block%20for%20Ultracompact%20Optical%20Switches&rft.jtitle=Nano%20letters&rft.au=Large,%20Nicolas&rft.date=2010-05-12&rft.volume=10&rft.issue=5&rft.spage=1741&rft.epage=1746&rft.pages=1741-1746&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1001636&rft_dat=%3Cproquest_cross%3E733516829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733516829&rft_id=info:pmid/20405903&rfr_iscdi=true |