Loading…

Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches

We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2010-05, Vol.10 (5), p.1741-1746
Main Authors: Large, Nicolas, Abb, Martina, Aizpurua, Javier, Muskens, Otto L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913
cites cdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913
container_end_page 1746
container_issue 5
container_start_page 1741
container_title Nano letters
container_volume 10
creator Large, Nicolas
Abb, Martina
Aizpurua, Javier
Muskens, Otto L
description We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.
doi_str_mv 10.1021/nl1001636
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733516829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733516829</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</originalsourceid><addsrcrecordid>eNpt0E1PHDEMBuCoouKrHPoHqlwQ6mHBmUyym2MXUVppVZAK55GTSSA0k2yTTBH_nkEsy6XywT48suWXkM8MThk07CwGBsAklx_IPhMcZlKpZmc7L9o9clDKAwAoLmCX7DXQglDA94m-vk81mRT70VT_z4YnukrY255eByxDit7QXxgTxmpjRIqFLkcfeh_v6DIk84e6lOltqBlNGtZoKr1aV28w0N-Pvpp7Wz6Rjw5DsUebfkhuvl_cnP-Yra4uf55_W82wbUWdCTASJXdiznTfK6eBc9tIqTkIPZUTaJlyILiSCrVT0Fiz0Lyfa2UU44fk5HXtOqe_oy21G3wxNgSMNo2lm3MumFw0apJfX6XJqZRsXbfOfsD81DHoXgLttoFO9stm66gH22_lW4ITON4ALNPXLmM0vry7Zi4Va9p3h6Z0D2nMccriPwefAQOnidI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733516829</pqid></control><display><type>article</type><title>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Large, Nicolas ; Abb, Martina ; Aizpurua, Javier ; Muskens, Otto L</creator><creatorcontrib>Large, Nicolas ; Abb, Martina ; Aizpurua, Javier ; Muskens, Otto L</creatorcontrib><description>We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1001636</identifier><identifier>PMID: 20405903</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Computer-Aided Design ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric Conductivity ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Electronics - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Materials science ; Micro-Electrical-Mechanical Systems - instrumentation ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - instrumentation ; Nanotubes ; Optical Devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal Processing, Computer-Assisted - instrumentation ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation</subject><ispartof>Nano letters, 2010-05, Vol.10 (5), p.1741-1746</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</citedby><cites>FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22769124$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20405903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Large, Nicolas</creatorcontrib><creatorcontrib>Abb, Martina</creatorcontrib><creatorcontrib>Aizpurua, Javier</creatorcontrib><creatorcontrib>Muskens, Otto L</creatorcontrib><title>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.</description><subject>Applied sciences</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Computer-Aided Design</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric Conductivity</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotubes</subject><subject>Optical Devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1PHDEMBuCoouKrHPoHqlwQ6mHBmUyym2MXUVppVZAK55GTSSA0k2yTTBH_nkEsy6XywT48suWXkM8MThk07CwGBsAklx_IPhMcZlKpZmc7L9o9clDKAwAoLmCX7DXQglDA94m-vk81mRT70VT_z4YnukrY255eByxDit7QXxgTxmpjRIqFLkcfeh_v6DIk84e6lOltqBlNGtZoKr1aV28w0N-Pvpp7Wz6Rjw5DsUebfkhuvl_cnP-Yra4uf55_W82wbUWdCTASJXdiznTfK6eBc9tIqTkIPZUTaJlyILiSCrVT0Fiz0Lyfa2UU44fk5HXtOqe_oy21G3wxNgSMNo2lm3MumFw0apJfX6XJqZRsXbfOfsD81DHoXgLttoFO9stm66gH22_lW4ITON4ALNPXLmM0vry7Zi4Va9p3h6Z0D2nMccriPwefAQOnidI</recordid><startdate>20100512</startdate><enddate>20100512</enddate><creator>Large, Nicolas</creator><creator>Abb, Martina</creator><creator>Aizpurua, Javier</creator><creator>Muskens, Otto L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100512</creationdate><title>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</title><author>Large, Nicolas ; Abb, Martina ; Aizpurua, Javier ; Muskens, Otto L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Computer-Aided Design</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric Conductivity</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotubes</topic><topic>Optical Devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Large, Nicolas</creatorcontrib><creatorcontrib>Abb, Martina</creatorcontrib><creatorcontrib>Aizpurua, Javier</creatorcontrib><creatorcontrib>Muskens, Otto L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Large, Nicolas</au><au>Abb, Martina</au><au>Aizpurua, Javier</au><au>Muskens, Otto L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-05-12</date><risdate>2010</risdate><volume>10</volume><issue>5</issue><spage>1741</spage><epage>1746</epage><pages>1741-1746</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We propose and explore theoretically a new concept of ultrafast optical switches based on nonlinear plasmonic nanoantennas. The antenna nanoswitch operates on the transition from the capacitive to conductive coupling regimes between two closely spaced metal nanorods. By filling the antenna gap with amorphous silicon, progressive antenna-gap loading is achieved due to variations in the free-carrier density in the semiconductor. Strong modification of the antenna response is observed both in the far-field response and in the local near-field intensity. The large modulation depth, low switching threshold, and potentially ultrafast time response of antenna switches holds promise for applications ranging from integrated nanophotonic circuits to quantum information devices.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20405903</pmid><doi>10.1021/nl1001636</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-05, Vol.10 (5), p.1741-1746
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_733516829
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Computer-Aided Design
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electric Conductivity
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Electronics - instrumentation
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Materials science
Micro-Electrical-Mechanical Systems - instrumentation
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - instrumentation
Nanotubes
Optical Devices
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal Processing, Computer-Assisted - instrumentation
Surface and interface electron states
Surface Plasmon Resonance - instrumentation
title Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoconductively%20Loaded%20Plasmonic%20Nanoantenna%20as%20Building%20Block%20for%20Ultracompact%20Optical%20Switches&rft.jtitle=Nano%20letters&rft.au=Large,%20Nicolas&rft.date=2010-05-12&rft.volume=10&rft.issue=5&rft.spage=1741&rft.epage=1746&rft.pages=1741-1746&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1001636&rft_dat=%3Cproquest_cross%3E733516829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-50c6a63f571bdd9fb033e266b305b5b5f5ae19f053969abf902ec8b3d7b9c913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733516829&rft_id=info:pmid/20405903&rfr_iscdi=true