Loading…

SUMOylation attenuates c-Maf-dependent IL-4 expression

The function of transcription factors can be critically regulated by SUMOylation. c-Maf, the cellular counterpart of v-maf oncogene, is a potent transactivator of the IL-4 gene in Th2 cells. We found in a yeast two-hybrid screen that c-Maf can interact with Ubc9 and PIAS1, two key enzymes of the SUM...

Full description

Saved in:
Bibliographic Details
Published in:European journal of immunology 2010-04, Vol.40 (4), p.1174-1184
Main Authors: Lin, Bo-Shiou, Tsai, Pei-Yun, Hsieh, Wan-Yun, Tsao, Hsiao-Wei, Liu, Meng-Wei, Grenningloh, Roland, Wang, Li-Fang, Ho, I. Cheng, Miaw, Shi-Chuen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The function of transcription factors can be critically regulated by SUMOylation. c-Maf, the cellular counterpart of v-maf oncogene, is a potent transactivator of the IL-4 gene in Th2 cells. We found in a yeast two-hybrid screen that c-Maf can interact with Ubc9 and PIAS1, two key enzymes of the SUMOylation pathway. In this study, we report that c-Maf co-localized with these two SUMO (small ubiquitin-like modifier) ligases in the nucleus and that c-Maf can be SUMOylated in vitro and also in primary Th2 cells. We also demonstrated that lysine-33 is the dominant, if not the only, SUMO acceptor site of c-Maf. SUMOylation of c-Maf attenuated its transcriptional activity. Reciprocally, a SUMOylation resistant c-Maf was more potent than WT-c-Maf in driving IL-4 production in c-Maf-deficient Th2 cells. Furthermore, we showed that ablation of the SUMO site did not alter the subcellular localization or the stability of c-Maf protein but instead enhanced its recruitment to the Il4-promoter. We conclude that SUMOylation at lysine-33 is a functionally critical post-translational modification event of c-Maf in Th cells.
ISSN:0014-2980
1521-4141
DOI:10.1002/eji.200939788