Loading…

Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model

Summary Objectives:  To test the hypothesis that protective ventilation strategy (PVS) as defined by the use of low stretch ventilation (tidal volume of 5 ml·kg−1 and employing 5 cm of positive end expiratory pressure (PEEP) during one lung ventilation (OLV) in piglets would result in reduced injury...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric anesthesia 2010-04, Vol.20 (4), p.356-364
Main Authors: THEROUX, MARY C., FISHER, ALICIA O., HORNER, LIANA M., RODRIGUEZ, MARIA E., COSTARINO, ANDREW T., MILLER, THOMAS L., SHAFFER, THOMAS H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43
cites cdi_FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43
container_end_page 364
container_issue 4
container_start_page 356
container_title Pediatric anesthesia
container_volume 20
creator THEROUX, MARY C.
FISHER, ALICIA O.
HORNER, LIANA M.
RODRIGUEZ, MARIA E.
COSTARINO, ANDREW T.
MILLER, THOMAS L.
SHAFFER, THOMAS H.
description Summary Objectives:  To test the hypothesis that protective ventilation strategy (PVS) as defined by the use of low stretch ventilation (tidal volume of 5 ml·kg−1 and employing 5 cm of positive end expiratory pressure (PEEP) during one lung ventilation (OLV) in piglets would result in reduced injury compared to a control group of piglets who received the conventional ventilation (tidal volume of 10 ml·kg−1 and no PEEP). Background:  PVS has been found to be beneficial in adults to minimize injury from OLV. We designed the current study to test the beneficial effects of PVS in a piglet model of OLV. Methods:  Ten piglets each were assigned to either ‘Control’ group (tidal volume of 10 ml·kg−1 and no PEEP) or ‘PVS’ group (tidal volume of 5 ml·kg−1 during the OLV phase and PEEP of 5 cm of H2O throughout the study). Experiment consisted of 30 min of baseline ventilation, 3 h of OLV, and again 30 min of bilateral ventilation. Respiratory parameters and proinflammatory markers were measured as outcome. Results:  There was no difference in PaO2 between groups. PaCO2 (P 
doi_str_mv 10.1111/j.1460-9592.2009.03195.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733528287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733528287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi1ERUvhLyDfOCX4O_GBQ1m1pWrV7gHUo_Em48qLEy92Unb_PUl3VdRb5zJjzfuMpQchTElJp_qyLqlQpNBSs5IRokvCqZbl9g06eV68nWYqZSGVkMfofc5rQihnir1Dx1RrqhUTJ-jXMsUBmsE_An6EfvDBDj72eIg4QTs2gH3vgu06O8S0mx7rcWouxQ7HHnAY-4cXnO-xxRv_EGDAXWwhfEBHzoYMHw_9FP28OP-x-F7c3F1eLc5uikYQJQsngAJ10mnFnW5BupbWom4bqolkDVhJKyI4b61eNVpVmjqo5UrVQglLQfBT9Hl_d5PinxHyYDqfGwjB9hDHbCrOJatZXU3Jep9sUsw5gTOb5DubdoYSM-s1azNbNLNFM-s1T3rNdkI_HT4ZVx20_8GDzynwdR_46wPsXn3YLM9u52niiz3v8wDbZ96m30ZVvJLm_vbS3LPri2_XC2WW_B_PvZmH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733528287</pqid></control><display><type>article</type><title>Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>THEROUX, MARY C. ; FISHER, ALICIA O. ; HORNER, LIANA M. ; RODRIGUEZ, MARIA E. ; COSTARINO, ANDREW T. ; MILLER, THOMAS L. ; SHAFFER, THOMAS H.</creator><creatorcontrib>THEROUX, MARY C. ; FISHER, ALICIA O. ; HORNER, LIANA M. ; RODRIGUEZ, MARIA E. ; COSTARINO, ANDREW T. ; MILLER, THOMAS L. ; SHAFFER, THOMAS H.</creatorcontrib><description><![CDATA[Summary Objectives:  To test the hypothesis that protective ventilation strategy (PVS) as defined by the use of low stretch ventilation (tidal volume of 5 ml·kg−1 and employing 5 cm of positive end expiratory pressure (PEEP) during one lung ventilation (OLV) in piglets would result in reduced injury compared to a control group of piglets who received the conventional ventilation (tidal volume of 10 ml·kg−1 and no PEEP). Background:  PVS has been found to be beneficial in adults to minimize injury from OLV. We designed the current study to test the beneficial effects of PVS in a piglet model of OLV. Methods:  Ten piglets each were assigned to either ‘Control’ group (tidal volume of 10 ml·kg−1 and no PEEP) or ‘PVS’ group (tidal volume of 5 ml·kg−1 during the OLV phase and PEEP of 5 cm of H2O throughout the study). Experiment consisted of 30 min of baseline ventilation, 3 h of OLV, and again 30 min of bilateral ventilation. Respiratory parameters and proinflammatory markers were measured as outcome. Results:  There was no difference in PaO2 between groups. PaCO2 (P < 0.01) and ventilatory rate (P < 0.01) were higher at 1.5 h OLV and at the end point in the PVS group. Peak inflating pressure (PIP) and pulmonary resistance were higher (P < 0.05) in the control group at 1.5 h OLV. tumor necrosis factor‐alpha (P < 0.04) and IL‐8 were less (P < 0.001) in the plasma from the PVS group, while IL‐6 and IL‐8 were less (P < 0.04) in the lung tissue from ventilated lungs in the PVS group. Conclusions:  Based on this model, PVS decreases inflammatory injury both systemically and in the lung tissue with no adverse effect on oxygenation, ventilation, or lung function.]]></description><identifier>ISSN: 1155-5645</identifier><identifier>EISSN: 1460-9592</identifier><identifier>DOI: 10.1111/j.1460-9592.2009.03195.x</identifier><identifier>PMID: 19919624</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Newborn ; cytokines ; Cytokines - metabolism ; Disease Models, Animal ; Lung - metabolism ; one lung ventilation ; piglets ; Pneumonia - complications ; Pneumonia - prevention &amp; control ; Positive-Pressure Respiration - methods ; protective ventilation ; Respiration, Artificial - adverse effects ; Swine ; thoracic anesthesia ; Tidal Volume ; Tumor Necrosis Factor-alpha - metabolism ; Vascular Resistance ; Ventilator-Induced Lung Injury - etiology ; Ventilator-Induced Lung Injury - prevention &amp; control</subject><ispartof>Pediatric anesthesia, 2010-04, Vol.20 (4), p.356-364</ispartof><rights>2009 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43</citedby><cites>FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19919624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>THEROUX, MARY C.</creatorcontrib><creatorcontrib>FISHER, ALICIA O.</creatorcontrib><creatorcontrib>HORNER, LIANA M.</creatorcontrib><creatorcontrib>RODRIGUEZ, MARIA E.</creatorcontrib><creatorcontrib>COSTARINO, ANDREW T.</creatorcontrib><creatorcontrib>MILLER, THOMAS L.</creatorcontrib><creatorcontrib>SHAFFER, THOMAS H.</creatorcontrib><title>Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model</title><title>Pediatric anesthesia</title><addtitle>Paediatr Anaesth</addtitle><description><![CDATA[Summary Objectives:  To test the hypothesis that protective ventilation strategy (PVS) as defined by the use of low stretch ventilation (tidal volume of 5 ml·kg−1 and employing 5 cm of positive end expiratory pressure (PEEP) during one lung ventilation (OLV) in piglets would result in reduced injury compared to a control group of piglets who received the conventional ventilation (tidal volume of 10 ml·kg−1 and no PEEP). Background:  PVS has been found to be beneficial in adults to minimize injury from OLV. We designed the current study to test the beneficial effects of PVS in a piglet model of OLV. Methods:  Ten piglets each were assigned to either ‘Control’ group (tidal volume of 10 ml·kg−1 and no PEEP) or ‘PVS’ group (tidal volume of 5 ml·kg−1 during the OLV phase and PEEP of 5 cm of H2O throughout the study). Experiment consisted of 30 min of baseline ventilation, 3 h of OLV, and again 30 min of bilateral ventilation. Respiratory parameters and proinflammatory markers were measured as outcome. Results:  There was no difference in PaO2 between groups. PaCO2 (P < 0.01) and ventilatory rate (P < 0.01) were higher at 1.5 h OLV and at the end point in the PVS group. Peak inflating pressure (PIP) and pulmonary resistance were higher (P < 0.05) in the control group at 1.5 h OLV. tumor necrosis factor‐alpha (P < 0.04) and IL‐8 were less (P < 0.001) in the plasma from the PVS group, while IL‐6 and IL‐8 were less (P < 0.04) in the lung tissue from ventilated lungs in the PVS group. Conclusions:  Based on this model, PVS decreases inflammatory injury both systemically and in the lung tissue with no adverse effect on oxygenation, ventilation, or lung function.]]></description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>cytokines</subject><subject>Cytokines - metabolism</subject><subject>Disease Models, Animal</subject><subject>Lung - metabolism</subject><subject>one lung ventilation</subject><subject>piglets</subject><subject>Pneumonia - complications</subject><subject>Pneumonia - prevention &amp; control</subject><subject>Positive-Pressure Respiration - methods</subject><subject>protective ventilation</subject><subject>Respiration, Artificial - adverse effects</subject><subject>Swine</subject><subject>thoracic anesthesia</subject><subject>Tidal Volume</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Vascular Resistance</subject><subject>Ventilator-Induced Lung Injury - etiology</subject><subject>Ventilator-Induced Lung Injury - prevention &amp; control</subject><issn>1155-5645</issn><issn>1460-9592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAQhi1ERUvhLyDfOCX4O_GBQ1m1pWrV7gHUo_Em48qLEy92Unb_PUl3VdRb5zJjzfuMpQchTElJp_qyLqlQpNBSs5IRokvCqZbl9g06eV68nWYqZSGVkMfofc5rQihnir1Dx1RrqhUTJ-jXMsUBmsE_An6EfvDBDj72eIg4QTs2gH3vgu06O8S0mx7rcWouxQ7HHnAY-4cXnO-xxRv_EGDAXWwhfEBHzoYMHw_9FP28OP-x-F7c3F1eLc5uikYQJQsngAJ10mnFnW5BupbWom4bqolkDVhJKyI4b61eNVpVmjqo5UrVQglLQfBT9Hl_d5PinxHyYDqfGwjB9hDHbCrOJatZXU3Jep9sUsw5gTOb5DubdoYSM-s1azNbNLNFM-s1T3rNdkI_HT4ZVx20_8GDzynwdR_46wPsXn3YLM9u52niiz3v8wDbZ96m30ZVvJLm_vbS3LPri2_XC2WW_B_PvZmH</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>THEROUX, MARY C.</creator><creator>FISHER, ALICIA O.</creator><creator>HORNER, LIANA M.</creator><creator>RODRIGUEZ, MARIA E.</creator><creator>COSTARINO, ANDREW T.</creator><creator>MILLER, THOMAS L.</creator><creator>SHAFFER, THOMAS H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201004</creationdate><title>Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model</title><author>THEROUX, MARY C. ; FISHER, ALICIA O. ; HORNER, LIANA M. ; RODRIGUEZ, MARIA E. ; COSTARINO, ANDREW T. ; MILLER, THOMAS L. ; SHAFFER, THOMAS H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>cytokines</topic><topic>Cytokines - metabolism</topic><topic>Disease Models, Animal</topic><topic>Lung - metabolism</topic><topic>one lung ventilation</topic><topic>piglets</topic><topic>Pneumonia - complications</topic><topic>Pneumonia - prevention &amp; control</topic><topic>Positive-Pressure Respiration - methods</topic><topic>protective ventilation</topic><topic>Respiration, Artificial - adverse effects</topic><topic>Swine</topic><topic>thoracic anesthesia</topic><topic>Tidal Volume</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Vascular Resistance</topic><topic>Ventilator-Induced Lung Injury - etiology</topic><topic>Ventilator-Induced Lung Injury - prevention &amp; control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>THEROUX, MARY C.</creatorcontrib><creatorcontrib>FISHER, ALICIA O.</creatorcontrib><creatorcontrib>HORNER, LIANA M.</creatorcontrib><creatorcontrib>RODRIGUEZ, MARIA E.</creatorcontrib><creatorcontrib>COSTARINO, ANDREW T.</creatorcontrib><creatorcontrib>MILLER, THOMAS L.</creatorcontrib><creatorcontrib>SHAFFER, THOMAS H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pediatric anesthesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>THEROUX, MARY C.</au><au>FISHER, ALICIA O.</au><au>HORNER, LIANA M.</au><au>RODRIGUEZ, MARIA E.</au><au>COSTARINO, ANDREW T.</au><au>MILLER, THOMAS L.</au><au>SHAFFER, THOMAS H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model</atitle><jtitle>Pediatric anesthesia</jtitle><addtitle>Paediatr Anaesth</addtitle><date>2010-04</date><risdate>2010</risdate><volume>20</volume><issue>4</issue><spage>356</spage><epage>364</epage><pages>356-364</pages><issn>1155-5645</issn><eissn>1460-9592</eissn><abstract><![CDATA[Summary Objectives:  To test the hypothesis that protective ventilation strategy (PVS) as defined by the use of low stretch ventilation (tidal volume of 5 ml·kg−1 and employing 5 cm of positive end expiratory pressure (PEEP) during one lung ventilation (OLV) in piglets would result in reduced injury compared to a control group of piglets who received the conventional ventilation (tidal volume of 10 ml·kg−1 and no PEEP). Background:  PVS has been found to be beneficial in adults to minimize injury from OLV. We designed the current study to test the beneficial effects of PVS in a piglet model of OLV. Methods:  Ten piglets each were assigned to either ‘Control’ group (tidal volume of 10 ml·kg−1 and no PEEP) or ‘PVS’ group (tidal volume of 5 ml·kg−1 during the OLV phase and PEEP of 5 cm of H2O throughout the study). Experiment consisted of 30 min of baseline ventilation, 3 h of OLV, and again 30 min of bilateral ventilation. Respiratory parameters and proinflammatory markers were measured as outcome. Results:  There was no difference in PaO2 between groups. PaCO2 (P < 0.01) and ventilatory rate (P < 0.01) were higher at 1.5 h OLV and at the end point in the PVS group. Peak inflating pressure (PIP) and pulmonary resistance were higher (P < 0.05) in the control group at 1.5 h OLV. tumor necrosis factor‐alpha (P < 0.04) and IL‐8 were less (P < 0.001) in the plasma from the PVS group, while IL‐6 and IL‐8 were less (P < 0.04) in the lung tissue from ventilated lungs in the PVS group. Conclusions:  Based on this model, PVS decreases inflammatory injury both systemically and in the lung tissue with no adverse effect on oxygenation, ventilation, or lung function.]]></abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19919624</pmid><doi>10.1111/j.1460-9592.2009.03195.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1155-5645
ispartof Pediatric anesthesia, 2010-04, Vol.20 (4), p.356-364
issn 1155-5645
1460-9592
language eng
recordid cdi_proquest_miscellaneous_733528287
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Animals
Animals, Newborn
cytokines
Cytokines - metabolism
Disease Models, Animal
Lung - metabolism
one lung ventilation
piglets
Pneumonia - complications
Pneumonia - prevention & control
Positive-Pressure Respiration - methods
protective ventilation
Respiration, Artificial - adverse effects
Swine
thoracic anesthesia
Tidal Volume
Tumor Necrosis Factor-alpha - metabolism
Vascular Resistance
Ventilator-Induced Lung Injury - etiology
Ventilator-Induced Lung Injury - prevention & control
title Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protective%20ventilation%20to%20reduce%20inflammatory%20injury%20from%20one%20lung%20ventilation%20in%20a%20piglet%20model&rft.jtitle=Pediatric%20anesthesia&rft.au=THEROUX,%20MARY%20C.&rft.date=2010-04&rft.volume=20&rft.issue=4&rft.spage=356&rft.epage=364&rft.pages=356-364&rft.issn=1155-5645&rft.eissn=1460-9592&rft_id=info:doi/10.1111/j.1460-9592.2009.03195.x&rft_dat=%3Cproquest_cross%3E733528287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4065-f4e1e1f5f963f9de5fd1848dc19052cea5170433da9bc96791fe85b68464a1e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733528287&rft_id=info:pmid/19919624&rfr_iscdi=true