Loading…

Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes

Sphingosylphosphorylcholine (SPC) mediates various inflammatory and behavioral responses in atopic dermatitis. Recent studies have shown that dysfunction of the epidermal permeability barrier itself plays a primary role in the etiology of atopic dermatitis. However, the effects of SPC on major prote...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical pharmacology 2010-07, Vol.80 (1), p.95-103
Main Authors: Choi, Hyun, Kim, Shinhyoung, Kim, Hyoung-June, Kim, Kwang-Mi, Lee, Chang-Hoon, Shin, Jennifer H., Noh, Minsoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sphingosylphosphorylcholine (SPC) mediates various inflammatory and behavioral responses in atopic dermatitis. Recent studies have shown that dysfunction of the epidermal permeability barrier itself plays a primary role in the etiology of atopic dermatitis. However, the effects of SPC on major proteins essential to the development of the epidermal permeability barrier such as filaggrin, loricrin, involucrin, keratin 1, keratin 10 and small proline-rich proteins are still unclear. In this study, we demonstrated that SPC significantly reduces filaggrin gene transcription, implying that SPC plays a pivotal role in impairment of the epidermal permeability barrier in atopic dermatitis lesional skin. In cultured normal human keratinocytes (NHKs), SPC increases the intracellular level of reactive oxygen species (ROS) and up-regulates NADPH oxidase 5 (NOX5) gene transcription. SPC also stimulates prostaglandin (PG) E 2 production by increasing cyclooxygenase (COX)-2 expression in NHK. The effects of the prostanoid EP receptor agonists, limaprost, butaprost, and sulprostone on filaggrin gene expression in NHK suggest that the prostanoid EP2 receptor plays a significant role in the PGE 2-mediated filaggrin down-regulation. In contrast, limaprost and butaprost do not affect NOX5 expression in NHK, implying that the NOX5-regulated ROS pathway stimulated by SPC may be upstream of the COX-2 pathway. We propose that the increase in SPC levels further aggravates dermatological symptoms of atopic dermatitis through SPC-induced down-regulation of filaggrin in NHK.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2010.03.009