Loading…

Mechanisms involved in cholesterol-induced neuronal insulin resistance

Insulin receptors (IRs) are highly expressed in the central nervous system (CNS) and play an important role in normal brain functions, such as learning and memory. Due to the increasing rate of obesity in western societies and overall high fat diets, the incidents of neuronal insulin resistance is a...

Full description

Saved in:
Bibliographic Details
Published in:Neuropharmacology 2009-09, Vol.57 (3), p.268-276
Main Authors: Taghibiglou, Changiz, Bradley, Clarrisa A., Gaertner, Tara, Li, Yuping, Wang, Yushan, Wang, Yu Tian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Insulin receptors (IRs) are highly expressed in the central nervous system (CNS) and play an important role in normal brain functions, such as learning and memory. Due to the increasing rate of obesity in western societies and overall high fat diets, the incidents of neuronal insulin resistance is also on the rise, but the underlying mechanism is still poorly characterized. We found that cholesterol treatment produces robust insulin signaling resistance that is characterized by the marked reduction in insulin-stimulated tyrosine phosphorylation of the IR and its downstream targets insulin receptor substrate 1 (IRS1) and 2 (IRS2). Surface expression of IRs was also decreased and was correlated with an increase in facilitated receptor endocytosis. Membrane fractionation showed that after cholesterol treatment, the proportion of IRs localized in the lipid raft increased and correspondingly there was a reduction of IRs in the non-raft membrane. Interestingly, we found that IRs in the lipid rafts, unlike their counterparts in the non-raft membrane domain, were essentially unresponsive to insulin stimulation and that a high level of tyrosine phosphatase activity was associated with these raft fractions. Our results suggest that the lipid raft microdomain of the neuronal plasma membrane has a strong influence on IR signaling, and that incorporation of high levels of cholesterol may reduce IR signaling by increasing their representation in lipid rafts. The trapping of the IR in the lipid raft domain may result in its inactivation and promote its endocytosis: effects that could contribute to neuronal insulin resistance in obesity.
ISSN:0028-3908
1873-7064
DOI:10.1016/j.neuropharm.2009.05.013