Loading…
Taste receptor cell-based biosensor for taste specific recognition based on temporal firing
Taste receptor cells are the taste sensation elements expressing sour, salty, sweet, bitter and umami receptors, respectively. There are cell-to-cell communications between different types of cells. Nevertheless, the mechanism of taste sensation and taste information coded by taste receptor cell is...
Saved in:
Published in: | Biosensors & bioelectronics 2009-09, Vol.25 (1), p.228-233 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Taste receptor cells are the taste sensation elements expressing sour, salty, sweet, bitter and umami receptors, respectively. There are cell-to-cell communications between different types of cells. Nevertheless, the mechanism of taste sensation and taste information coded by taste receptor cell is not well understood at present and it is a long-standing issue. In order to explore taste sensation and analyze taste-firing responses from another point of view, we present a promising biomimetic taste receptor cell-based biosensor. The temporal firing responses to different tastants are recorded. Meanwhile, we investigate the firing rate and temporal firing of taste receptor cells. The experimental results are consistent with that from patch clamp and molecular biology experiment. Firing rate is dependent on the concentration of stimulus. PCA analysis (principal component analysis) of the temporal firing responses shows that the responses from different types of taste receptor cells can be distinguished. Furthermore, exogenous ATP is applied to mimic the effects of transmitter ATP (adenosine triphosphate) released from type II cells onto type III cells. Both enhanced and inhibitory effects on spontaneous firing are observed. This novel biomimetic hybrid biosensor provides a potential solution to investigate the taste sensation and coding mechanisms in a non-invasive way. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2009.05.034 |