Loading…

Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation

Objectives We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). Background Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. Methods We p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American College of Cardiology 2010-02, Vol.55 (5), p.469-480
Main Authors: Adam, Oliver, MD, Lavall, Daniel, MS, Theobald, Katharina, MS, Hohl, Mathias, PhD, Grube, Markus, PhD, Ameling, Sabine, MS, Sussman, Mark A., PhD, Rosenkranz, Stephan, MD, PhD, Kroemer, Heyo K., PhD, Schäfers, Hans-Joachim, MD, Böhm, Michael, MD, Laufs, Ulrich, MD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923
cites cdi_FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923
container_end_page 480
container_issue 5
container_start_page 469
container_title Journal of the American College of Cardiology
container_volume 55
creator Adam, Oliver, MD
Lavall, Daniel, MS
Theobald, Katharina, MS
Hohl, Mathias, PhD
Grube, Markus, PhD
Ameling, Sabine, MS
Sussman, Mark A., PhD
Rosenkranz, Stephan, MD, PhD
Kroemer, Heyo K., PhD
Schäfers, Hans-Joachim, MD
Böhm, Michael, MD
Laufs, Ulrich, MD
description Objectives We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). Background Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. Methods We performed transcriptional profiling of left atrial myocardium from patients with AF and sinus rhythm and applied cultured primary cardiac cells and transgenic mice with overexpression of constitutively active V12Rac1 (RacET) in which AF develops at old age to characterize mediators of the signal transduction of atrial remodeling. Results Left atrial myocardium from patients with AF showed a marked up-regulation of connective tissue growth factor (CTGF) expression compared with sinus rhythm patients. This was associated with increased fibrosis, nicotinamide adenine dinucleotide phosphate oxidase, Rac1 and RhoA activity, up-regulation of N-cadherin and connexin 43 (Cx43) expression, and increased angiotensin II tissue concentration. In neonatal rat cardiomyocytes and fibroblasts, a specific small molecule inhibitor of Rac1 or simvastatin completely prevented the angiotensin II–induced up-regulation of CTGF, Cx43, and N-cadherin expression. Transfection with small-inhibiting CTGF ribonucleic acid blocked Cx43 and N-cadherin expression. RacET mice showed up-regulation of CTGF, Cx43, and N-cadherin protein expression. Inhibition of Rac1 by oral statin treatment prevented these effects, identifying Rac1 as a key regulator of CTGF in vivo. Conclusions The data identify CTGF as an important mediator of atrial structural remodeling during AF. Angiotensin II activates CTGF via activation of Rac1 and nicotinamide adenine dinucleotide phosphate oxidase, leading to up-regulation of Cx43, N-cadherin, and interstitial fibrosis and therefore contributing to the signal transduction of atrial structural remodeling.
doi_str_mv 10.1016/j.jacc.2009.08.064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733580352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109709037620</els_id><sourcerecordid>733580352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923</originalsourceid><addsrcrecordid>eNp9kt9r1TAUx4Mo7jr9B3yQgohPrSdJmzYgwrjszsFQmPM5pMmpS-1Nr0k7t__elHu3wR58Scjh8z0_8j2EvKVQUKDiU1_02piCAcgCmgJE-YysaFU1Oa9k_ZysoOZVTkHWR-RVjD0AiIbKl-SIAaV1KdiKxEttaH7u7WzQZuvRezSTu8HsysU4Y3YWxr_TdbbRZhpDdom_5kFPGPfkrfNZyTPtbfYtX2t7jSFFTm93AWN0o8_S62QKTg_ZxrXBDUmbwq_Ji04PEd8c7mPyc3N6tf6aX3w_O1-fXORGUDblRkrWaE1t16HWndTUWNpiGr1qoewEsxWj6RS8Aytl3ejWSFMKSxtJS8n4Mfm4z7sL458Z46S2LhpMXXgc56hqzqsGeLWQ75-Q_TgHn5pTtALBBG9YmSi2p0wYYwzYqV1wWx3uFAW1OKJ6tTiiFkcUNCo5kkTvDqnndov2QXJvQQI-HAAdjR66oL1x8ZFjqTZlC_d5z2H6shuHQUXj0CfbXEieKTu6__fx5YncDM67VPE33mF8nFdFpkD9WHZnWR2QwGvBgP8D2R-9Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506263824</pqid></control><display><type>article</type><title>Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Adam, Oliver, MD ; Lavall, Daniel, MS ; Theobald, Katharina, MS ; Hohl, Mathias, PhD ; Grube, Markus, PhD ; Ameling, Sabine, MS ; Sussman, Mark A., PhD ; Rosenkranz, Stephan, MD, PhD ; Kroemer, Heyo K., PhD ; Schäfers, Hans-Joachim, MD ; Böhm, Michael, MD ; Laufs, Ulrich, MD</creator><creatorcontrib>Adam, Oliver, MD ; Lavall, Daniel, MS ; Theobald, Katharina, MS ; Hohl, Mathias, PhD ; Grube, Markus, PhD ; Ameling, Sabine, MS ; Sussman, Mark A., PhD ; Rosenkranz, Stephan, MD, PhD ; Kroemer, Heyo K., PhD ; Schäfers, Hans-Joachim, MD ; Böhm, Michael, MD ; Laufs, Ulrich, MD</creatorcontrib><description>Objectives We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). Background Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. Methods We performed transcriptional profiling of left atrial myocardium from patients with AF and sinus rhythm and applied cultured primary cardiac cells and transgenic mice with overexpression of constitutively active V12Rac1 (RacET) in which AF develops at old age to characterize mediators of the signal transduction of atrial remodeling. Results Left atrial myocardium from patients with AF showed a marked up-regulation of connective tissue growth factor (CTGF) expression compared with sinus rhythm patients. This was associated with increased fibrosis, nicotinamide adenine dinucleotide phosphate oxidase, Rac1 and RhoA activity, up-regulation of N-cadherin and connexin 43 (Cx43) expression, and increased angiotensin II tissue concentration. In neonatal rat cardiomyocytes and fibroblasts, a specific small molecule inhibitor of Rac1 or simvastatin completely prevented the angiotensin II–induced up-regulation of CTGF, Cx43, and N-cadherin expression. Transfection with small-inhibiting CTGF ribonucleic acid blocked Cx43 and N-cadherin expression. RacET mice showed up-regulation of CTGF, Cx43, and N-cadherin protein expression. Inhibition of Rac1 by oral statin treatment prevented these effects, identifying Rac1 as a key regulator of CTGF in vivo. Conclusions The data identify CTGF as an important mediator of atrial structural remodeling during AF. Angiotensin II activates CTGF via activation of Rac1 and nicotinamide adenine dinucleotide phosphate oxidase, leading to up-regulation of Cx43, N-cadherin, and interstitial fibrosis and therefore contributing to the signal transduction of atrial structural remodeling.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2009.08.064</identifier><identifier>PMID: 20117462</identifier><identifier>CODEN: JACCDI</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Aged ; Agreements ; Angiotensin II - metabolism ; Animals ; Animals, Newborn ; Arrays ; atrial fibrillation ; Atrial Fibrillation - metabolism ; Atrial Fibrillation - pathology ; Biological and medical sciences ; Biotechnology ; Cadherins - metabolism ; Cardiac arrhythmia ; Cardiac dysrhythmias ; Cardiology ; Cardiology. Vascular system ; Cardiomyocytes ; Cardiovascular ; Cell culture ; Connective Tissue Growth Factor - metabolism ; connexin 43 ; Connexin 43 - metabolism ; CTGF ; Deoxyribonucleic acid ; DNA ; Experiments ; Female ; Fibroblasts - metabolism ; Fibrosis ; Gene Expression Profiling ; Heart ; Heart Atria - metabolism ; Heart Atria - pathology ; Humans ; Hybridization ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; Internal Medicine ; Laboratory animals ; Male ; Medical sciences ; Mice ; Mice, Transgenic ; Middle Aged ; Myocardium - metabolism ; Myocardium - pathology ; Myocytes, Cardiac - metabolism ; Oxidative stress ; Rac1 ; rac1 GTP-Binding Protein - metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Cross-Talk ; rhoA GTP-Binding Protein - metabolism ; RNA polymerase ; Rodents ; Signal Transduction ; Software ; Statins ; Studies ; Transforming Growth Factor beta1 - metabolism ; Transgenic animals</subject><ispartof>Journal of the American College of Cardiology, 2010-02, Vol.55 (5), p.469-480</ispartof><rights>American College of Cardiology Foundation</rights><rights>2010 American College of Cardiology Foundation</rights><rights>2015 INIST-CNRS</rights><rights>Copyright (c) 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923</citedby><cites>FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22382122$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20117462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adam, Oliver, MD</creatorcontrib><creatorcontrib>Lavall, Daniel, MS</creatorcontrib><creatorcontrib>Theobald, Katharina, MS</creatorcontrib><creatorcontrib>Hohl, Mathias, PhD</creatorcontrib><creatorcontrib>Grube, Markus, PhD</creatorcontrib><creatorcontrib>Ameling, Sabine, MS</creatorcontrib><creatorcontrib>Sussman, Mark A., PhD</creatorcontrib><creatorcontrib>Rosenkranz, Stephan, MD, PhD</creatorcontrib><creatorcontrib>Kroemer, Heyo K., PhD</creatorcontrib><creatorcontrib>Schäfers, Hans-Joachim, MD</creatorcontrib><creatorcontrib>Böhm, Michael, MD</creatorcontrib><creatorcontrib>Laufs, Ulrich, MD</creatorcontrib><title>Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Objectives We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). Background Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. Methods We performed transcriptional profiling of left atrial myocardium from patients with AF and sinus rhythm and applied cultured primary cardiac cells and transgenic mice with overexpression of constitutively active V12Rac1 (RacET) in which AF develops at old age to characterize mediators of the signal transduction of atrial remodeling. Results Left atrial myocardium from patients with AF showed a marked up-regulation of connective tissue growth factor (CTGF) expression compared with sinus rhythm patients. This was associated with increased fibrosis, nicotinamide adenine dinucleotide phosphate oxidase, Rac1 and RhoA activity, up-regulation of N-cadherin and connexin 43 (Cx43) expression, and increased angiotensin II tissue concentration. In neonatal rat cardiomyocytes and fibroblasts, a specific small molecule inhibitor of Rac1 or simvastatin completely prevented the angiotensin II–induced up-regulation of CTGF, Cx43, and N-cadherin expression. Transfection with small-inhibiting CTGF ribonucleic acid blocked Cx43 and N-cadherin expression. RacET mice showed up-regulation of CTGF, Cx43, and N-cadherin protein expression. Inhibition of Rac1 by oral statin treatment prevented these effects, identifying Rac1 as a key regulator of CTGF in vivo. Conclusions The data identify CTGF as an important mediator of atrial structural remodeling during AF. Angiotensin II activates CTGF via activation of Rac1 and nicotinamide adenine dinucleotide phosphate oxidase, leading to up-regulation of Cx43, N-cadherin, and interstitial fibrosis and therefore contributing to the signal transduction of atrial structural remodeling.</description><subject>Aged</subject><subject>Agreements</subject><subject>Angiotensin II - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Arrays</subject><subject>atrial fibrillation</subject><subject>Atrial Fibrillation - metabolism</subject><subject>Atrial Fibrillation - pathology</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cadherins - metabolism</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac dysrhythmias</subject><subject>Cardiology</subject><subject>Cardiology. Vascular system</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular</subject><subject>Cell culture</subject><subject>Connective Tissue Growth Factor - metabolism</subject><subject>connexin 43</subject><subject>Connexin 43 - metabolism</subject><subject>CTGF</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Experiments</subject><subject>Female</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Gene Expression Profiling</subject><subject>Heart</subject><subject>Heart Atria - metabolism</subject><subject>Heart Atria - pathology</subject><subject>Humans</subject><subject>Hybridization</subject><subject>Hydroxymethylglutaryl-CoA Reductase Inhibitors</subject><subject>Internal Medicine</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Middle Aged</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Oxidative stress</subject><subject>Rac1</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Cross-Talk</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RNA polymerase</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Software</subject><subject>Statins</subject><subject>Studies</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transgenic animals</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kt9r1TAUx4Mo7jr9B3yQgohPrSdJmzYgwrjszsFQmPM5pMmpS-1Nr0k7t__elHu3wR58Scjh8z0_8j2EvKVQUKDiU1_02piCAcgCmgJE-YysaFU1Oa9k_ZysoOZVTkHWR-RVjD0AiIbKl-SIAaV1KdiKxEttaH7u7WzQZuvRezSTu8HsysU4Y3YWxr_TdbbRZhpDdom_5kFPGPfkrfNZyTPtbfYtX2t7jSFFTm93AWN0o8_S62QKTg_ZxrXBDUmbwq_Ji04PEd8c7mPyc3N6tf6aX3w_O1-fXORGUDblRkrWaE1t16HWndTUWNpiGr1qoewEsxWj6RS8Aytl3ejWSFMKSxtJS8n4Mfm4z7sL458Z46S2LhpMXXgc56hqzqsGeLWQ75-Q_TgHn5pTtALBBG9YmSi2p0wYYwzYqV1wWx3uFAW1OKJ6tTiiFkcUNCo5kkTvDqnndov2QXJvQQI-HAAdjR66oL1x8ZFjqTZlC_d5z2H6shuHQUXj0CfbXEieKTu6__fx5YncDM67VPE33mF8nFdFpkD9WHZnWR2QwGvBgP8D2R-9Zg</recordid><startdate>20100202</startdate><enddate>20100202</enddate><creator>Adam, Oliver, MD</creator><creator>Lavall, Daniel, MS</creator><creator>Theobald, Katharina, MS</creator><creator>Hohl, Mathias, PhD</creator><creator>Grube, Markus, PhD</creator><creator>Ameling, Sabine, MS</creator><creator>Sussman, Mark A., PhD</creator><creator>Rosenkranz, Stephan, MD, PhD</creator><creator>Kroemer, Heyo K., PhD</creator><creator>Schäfers, Hans-Joachim, MD</creator><creator>Böhm, Michael, MD</creator><creator>Laufs, Ulrich, MD</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20100202</creationdate><title>Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation</title><author>Adam, Oliver, MD ; Lavall, Daniel, MS ; Theobald, Katharina, MS ; Hohl, Mathias, PhD ; Grube, Markus, PhD ; Ameling, Sabine, MS ; Sussman, Mark A., PhD ; Rosenkranz, Stephan, MD, PhD ; Kroemer, Heyo K., PhD ; Schäfers, Hans-Joachim, MD ; Böhm, Michael, MD ; Laufs, Ulrich, MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aged</topic><topic>Agreements</topic><topic>Angiotensin II - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Arrays</topic><topic>atrial fibrillation</topic><topic>Atrial Fibrillation - metabolism</topic><topic>Atrial Fibrillation - pathology</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cadherins - metabolism</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac dysrhythmias</topic><topic>Cardiology</topic><topic>Cardiology. Vascular system</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular</topic><topic>Cell culture</topic><topic>Connective Tissue Growth Factor - metabolism</topic><topic>connexin 43</topic><topic>Connexin 43 - metabolism</topic><topic>CTGF</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Experiments</topic><topic>Female</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Gene Expression Profiling</topic><topic>Heart</topic><topic>Heart Atria - metabolism</topic><topic>Heart Atria - pathology</topic><topic>Humans</topic><topic>Hybridization</topic><topic>Hydroxymethylglutaryl-CoA Reductase Inhibitors</topic><topic>Internal Medicine</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Middle Aged</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Oxidative stress</topic><topic>Rac1</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Cross-Talk</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RNA polymerase</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Software</topic><topic>Statins</topic><topic>Studies</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, Oliver, MD</creatorcontrib><creatorcontrib>Lavall, Daniel, MS</creatorcontrib><creatorcontrib>Theobald, Katharina, MS</creatorcontrib><creatorcontrib>Hohl, Mathias, PhD</creatorcontrib><creatorcontrib>Grube, Markus, PhD</creatorcontrib><creatorcontrib>Ameling, Sabine, MS</creatorcontrib><creatorcontrib>Sussman, Mark A., PhD</creatorcontrib><creatorcontrib>Rosenkranz, Stephan, MD, PhD</creatorcontrib><creatorcontrib>Kroemer, Heyo K., PhD</creatorcontrib><creatorcontrib>Schäfers, Hans-Joachim, MD</creatorcontrib><creatorcontrib>Böhm, Michael, MD</creatorcontrib><creatorcontrib>Laufs, Ulrich, MD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, Oliver, MD</au><au>Lavall, Daniel, MS</au><au>Theobald, Katharina, MS</au><au>Hohl, Mathias, PhD</au><au>Grube, Markus, PhD</au><au>Ameling, Sabine, MS</au><au>Sussman, Mark A., PhD</au><au>Rosenkranz, Stephan, MD, PhD</au><au>Kroemer, Heyo K., PhD</au><au>Schäfers, Hans-Joachim, MD</au><au>Böhm, Michael, MD</au><au>Laufs, Ulrich, MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2010-02-02</date><risdate>2010</risdate><volume>55</volume><issue>5</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><coden>JACCDI</coden><abstract>Objectives We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). Background Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. Methods We performed transcriptional profiling of left atrial myocardium from patients with AF and sinus rhythm and applied cultured primary cardiac cells and transgenic mice with overexpression of constitutively active V12Rac1 (RacET) in which AF develops at old age to characterize mediators of the signal transduction of atrial remodeling. Results Left atrial myocardium from patients with AF showed a marked up-regulation of connective tissue growth factor (CTGF) expression compared with sinus rhythm patients. This was associated with increased fibrosis, nicotinamide adenine dinucleotide phosphate oxidase, Rac1 and RhoA activity, up-regulation of N-cadherin and connexin 43 (Cx43) expression, and increased angiotensin II tissue concentration. In neonatal rat cardiomyocytes and fibroblasts, a specific small molecule inhibitor of Rac1 or simvastatin completely prevented the angiotensin II–induced up-regulation of CTGF, Cx43, and N-cadherin expression. Transfection with small-inhibiting CTGF ribonucleic acid blocked Cx43 and N-cadherin expression. RacET mice showed up-regulation of CTGF, Cx43, and N-cadherin protein expression. Inhibition of Rac1 by oral statin treatment prevented these effects, identifying Rac1 as a key regulator of CTGF in vivo. Conclusions The data identify CTGF as an important mediator of atrial structural remodeling during AF. Angiotensin II activates CTGF via activation of Rac1 and nicotinamide adenine dinucleotide phosphate oxidase, leading to up-regulation of Cx43, N-cadherin, and interstitial fibrosis and therefore contributing to the signal transduction of atrial structural remodeling.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>20117462</pmid><doi>10.1016/j.jacc.2009.08.064</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2010-02, Vol.55 (5), p.469-480
issn 0735-1097
1558-3597
language eng
recordid cdi_proquest_miscellaneous_733580352
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Aged
Agreements
Angiotensin II - metabolism
Animals
Animals, Newborn
Arrays
atrial fibrillation
Atrial Fibrillation - metabolism
Atrial Fibrillation - pathology
Biological and medical sciences
Biotechnology
Cadherins - metabolism
Cardiac arrhythmia
Cardiac dysrhythmias
Cardiology
Cardiology. Vascular system
Cardiomyocytes
Cardiovascular
Cell culture
Connective Tissue Growth Factor - metabolism
connexin 43
Connexin 43 - metabolism
CTGF
Deoxyribonucleic acid
DNA
Experiments
Female
Fibroblasts - metabolism
Fibrosis
Gene Expression Profiling
Heart
Heart Atria - metabolism
Heart Atria - pathology
Humans
Hybridization
Hydroxymethylglutaryl-CoA Reductase Inhibitors
Internal Medicine
Laboratory animals
Male
Medical sciences
Mice
Mice, Transgenic
Middle Aged
Myocardium - metabolism
Myocardium - pathology
Myocytes, Cardiac - metabolism
Oxidative stress
Rac1
rac1 GTP-Binding Protein - metabolism
Rats
Rats, Sprague-Dawley
Receptor Cross-Talk
rhoA GTP-Binding Protein - metabolism
RNA polymerase
Rodents
Signal Transduction
Software
Statins
Studies
Transforming Growth Factor beta1 - metabolism
Transgenic animals
title Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rac1-Induced%20Connective%20Tissue%20Growth%20Factor%20Regulates%20Connexin%2043%20and%20N-Cadherin%20Expression%20in%20Atrial%20Fibrillation&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Adam,%20Oliver,%20MD&rft.date=2010-02-02&rft.volume=55&rft.issue=5&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=0735-1097&rft.eissn=1558-3597&rft.coden=JACCDI&rft_id=info:doi/10.1016/j.jacc.2009.08.064&rft_dat=%3Cproquest_cross%3E733580352%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-c9928aa1dffeaaf9a1cd1be1015b04f62d52162d63f0d9978abc9c46d18914923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506263824&rft_id=info:pmid/20117462&rfr_iscdi=true