Loading…
Crystalline phases of polydisperse spheres
We use specialized Monte Carlo simulation methods and moment free energy calculations to provide conclusive evidence that dense polydisperse spheres at equilibrium demix into coexisting fcc phases, with more phases appearing as the spread of diameters increases. We manage to track up to four coexist...
Saved in:
Published in: | Physical review letters 2010-03, Vol.104 (11), p.118302-118302, Article 118302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use specialized Monte Carlo simulation methods and moment free energy calculations to provide conclusive evidence that dense polydisperse spheres at equilibrium demix into coexisting fcc phases, with more phases appearing as the spread of diameters increases. We manage to track up to four coexisting phases. Each of these is fractionated: it contains a narrower distribution of particle sizes than is present in the system overall. We also demonstrate that, surprisingly, demixing transitions can be nearly continuous, accompanied by fluctuations in local particle size correlated over many lattice spacings. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.104.118302 |