Loading…

Photodegradation of methyl red by advanced and homogeneous photo-Fenton's processes: a comparative study and kinetic approach

The degradation of methyl red (MR), an azo dye, was carried out by the homogeneous photo-Fenton's process (HPFP) and the advanced photo-Fenton's process (APFP) using symmetrical peroxides such as hydrogen peroxide and ammonium persulfate (APS) as oxidants. The APFP showed higher efficiency...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental monitoring 2009-07, Vol.11 (7), p.1397-1404
Main Authors: Devi, L Gomathi, Raju, K S Anantha, Kumar, S Girish
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The degradation of methyl red (MR), an azo dye, was carried out by the homogeneous photo-Fenton's process (HPFP) and the advanced photo-Fenton's process (APFP) using symmetrical peroxides such as hydrogen peroxide and ammonium persulfate (APS) as oxidants. The APFP showed higher efficiency than their homogeneous counterparts even at high dye concentrations due to the faster reduction of Fe3+ to Fe2+ ions on the iron surface. H2O2 proved to be a better oxidant for both the processes. However, APS efficiently inhibited the precipitation of iron oxy hydroxides at higher dosage of iron powder compared to H2O2 by providing excess acidity to the reaction medium. The rate constant for the kinetics of decolorisation by various oxidation processes is of the order: Fe0/H2O2/UV>Fe0/H2O2/dark>Fe0/APS/UV>Fe2+/H2O2/UV>Fe0/UV>Fe0/APS/dark>Fe0/dark approximately H2O2/UV>Fe2+/APS/UV>APS/UV>Fe2+/H2O2/dark>Fe2+/APS/dark approximately Fe2+/UV. The degradation reaction was followed by UV-visible and GC-MS spectroscopic techniques. Based on the intermediates obtained, probable degradation mechanisms have been proposed. It was found that the initial mechanism in the APFP involves the reduction of azo groups to amines while in the case of HPFP it leads to the formation of hydroxylated products due to the oxidation of azo groups.
ISSN:1464-0325
1464-0333
DOI:10.1039/b900936a