Loading…
Viscoelastic creep in the human skeletal muscle–tendon unit
The purposes of the present study were to (1) characterize viscoelastic creep in vivo in the human skeletal muscle–tendon unit and (2) to examine the consistency of these responses during a single 30-s stretch. Twelve volunteers (mean ± SD = 22 ± 3 years; height = 169 ± 11 cm; mass = 70 ± 17 kg) par...
Saved in:
Published in: | European journal of applied physiology 2010-01, Vol.108 (1), p.207-211 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3 |
container_end_page | 211 |
container_issue | 1 |
container_start_page | 207 |
container_title | European journal of applied physiology |
container_volume | 108 |
creator | Ryan, Eric D. Herda, Trent J. Costa, Pablo B. Walter, Ashley A. Hoge, Katherine M. Stout, Jeffery R. Cramer, Joel T. |
description | The purposes of the present study were to (1) characterize viscoelastic creep in vivo in the human skeletal muscle–tendon unit and (2) to examine the consistency of these responses during a single 30-s stretch. Twelve volunteers (mean ± SD = 22 ± 3 years; height = 169 ± 11 cm; mass = 70 ± 17 kg) participated in two separate experimental trials. Each trial consisted of a 30-s constant-torque stretch of the plantar flexor muscles. Position (°) values were quantified at every 5-s period (0, 5, 10, 15, 20, 25, and 30 s) and the percent change in position was quantified for each 5-s epoch (0–5, 5–10, 10–15, 15–20, 20–25, and 25–30 s) relative to the total increase in the range of motion. In addition, the intraclass correlation coefficient (ICC) and standard errors of the measurement (SEM) were calculated for test–retest reliability. These results indicated that position increased over the entire 30-s stretch (
P
0.994 and SEM values (expressed as percentage of the mean) were
<
1.54%. In conclusion, these results demonstrate viscoelastic creep in vivo in the human skeletal muscle–tendon unit and suggest that these responses may be reliable for future studies. |
doi_str_mv | 10.1007/s00421-009-1284-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733614510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1922302661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3</originalsourceid><addsrcrecordid>eNp1kc1KxDAUhYMojo4-gBspgriq5iZt0yxcyOAfDLhRtyFNb52ObTom7cKd7-Ab-iRmmGEGBFc3cL577uGEkBOgl0CpuPKUJgxiSmUMLE9itkMOIOEyzjgTu5s3yBE59H5OKc0Z5PtkBFJCmmf0gFy_1t502Gjf1yYyDnER1TbqZxjNhlbbyL9jg71uonbwpsGfr-8ebdnZaLB1f0T2Kt14PF7PMXm5u32ePMTTp_vHyc00NkmW9XGSa82LqoJUC0i5SZMCIS2xYEB5JWRJtQmqSNOiNEEyRVJlgvJMoyhEVfIxuVj5Llz3MaDvVRtiY9Noi93gleA8gyQNbmNy9oecd4OzIZxilDPJhJABghVkXOe9w0otXN1q96mAqmWzatWsCs2qZbOKhZ3TtfFQtFhuN9ZVBuB8DWhvdFM5bU3tNxxj4U9kDoFjK84Hyb6h2yb8__ovVh2RJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203292779</pqid></control><display><type>article</type><title>Viscoelastic creep in the human skeletal muscle–tendon unit</title><source>Springer Nature</source><creator>Ryan, Eric D. ; Herda, Trent J. ; Costa, Pablo B. ; Walter, Ashley A. ; Hoge, Katherine M. ; Stout, Jeffery R. ; Cramer, Joel T.</creator><creatorcontrib>Ryan, Eric D. ; Herda, Trent J. ; Costa, Pablo B. ; Walter, Ashley A. ; Hoge, Katherine M. ; Stout, Jeffery R. ; Cramer, Joel T.</creatorcontrib><description>The purposes of the present study were to (1) characterize viscoelastic creep in vivo in the human skeletal muscle–tendon unit and (2) to examine the consistency of these responses during a single 30-s stretch. Twelve volunteers (mean ± SD = 22 ± 3 years; height = 169 ± 11 cm; mass = 70 ± 17 kg) participated in two separate experimental trials. Each trial consisted of a 30-s constant-torque stretch of the plantar flexor muscles. Position (°) values were quantified at every 5-s period (0, 5, 10, 15, 20, 25, and 30 s) and the percent change in position was quantified for each 5-s epoch (0–5, 5–10, 10–15, 15–20, 20–25, and 25–30 s) relative to the total increase in the range of motion. In addition, the intraclass correlation coefficient (ICC) and standard errors of the measurement (SEM) were calculated for test–retest reliability. These results indicated that position increased over the entire 30-s stretch (
P
< 0.05), while the majority of the increases in position (73–85%) occurred during the first 15–20 s. ICC values were
>
0.994 and SEM values (expressed as percentage of the mean) were
<
1.54%. In conclusion, these results demonstrate viscoelastic creep in vivo in the human skeletal muscle–tendon unit and suggest that these responses may be reliable for future studies.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-009-1284-2</identifier><identifier>PMID: 19915860</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Age Factors ; Aging - physiology ; Ankle Joint - physiology ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Electromyography ; Fundamental and applied biological sciences. Psychology ; Human Physiology ; Humans ; Laboratories ; Leg - physiology ; Muscle Contraction - physiology ; Muscle Strength - physiology ; Muscle Stretching Exercises - methods ; Muscle, Skeletal ; Neuromuscular diseases ; Occupational Medicine/Industrial Medicine ; Posture - physiology ; Proprioception ; Range of motion ; Range of Motion, Articular - physiology ; Short Communication ; Signal processing ; Sports Medicine ; Tendon Injuries - physiopathology ; Tendons ; Torque ; Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports ; Viscoelastic Substances ; Viscoelasticity</subject><ispartof>European journal of applied physiology, 2010-01, Vol.108 (1), p.207-211</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3</citedby><cites>FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22327981$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19915860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Eric D.</creatorcontrib><creatorcontrib>Herda, Trent J.</creatorcontrib><creatorcontrib>Costa, Pablo B.</creatorcontrib><creatorcontrib>Walter, Ashley A.</creatorcontrib><creatorcontrib>Hoge, Katherine M.</creatorcontrib><creatorcontrib>Stout, Jeffery R.</creatorcontrib><creatorcontrib>Cramer, Joel T.</creatorcontrib><title>Viscoelastic creep in the human skeletal muscle–tendon unit</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>The purposes of the present study were to (1) characterize viscoelastic creep in vivo in the human skeletal muscle–tendon unit and (2) to examine the consistency of these responses during a single 30-s stretch. Twelve volunteers (mean ± SD = 22 ± 3 years; height = 169 ± 11 cm; mass = 70 ± 17 kg) participated in two separate experimental trials. Each trial consisted of a 30-s constant-torque stretch of the plantar flexor muscles. Position (°) values were quantified at every 5-s period (0, 5, 10, 15, 20, 25, and 30 s) and the percent change in position was quantified for each 5-s epoch (0–5, 5–10, 10–15, 15–20, 20–25, and 25–30 s) relative to the total increase in the range of motion. In addition, the intraclass correlation coefficient (ICC) and standard errors of the measurement (SEM) were calculated for test–retest reliability. These results indicated that position increased over the entire 30-s stretch (
P
< 0.05), while the majority of the increases in position (73–85%) occurred during the first 15–20 s. ICC values were
>
0.994 and SEM values (expressed as percentage of the mean) were
<
1.54%. In conclusion, these results demonstrate viscoelastic creep in vivo in the human skeletal muscle–tendon unit and suggest that these responses may be reliable for future studies.</description><subject>Age Factors</subject><subject>Aging - physiology</subject><subject>Ankle Joint - physiology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Electromyography</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Leg - physiology</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Strength - physiology</subject><subject>Muscle Stretching Exercises - methods</subject><subject>Muscle, Skeletal</subject><subject>Neuromuscular diseases</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Posture - physiology</subject><subject>Proprioception</subject><subject>Range of motion</subject><subject>Range of Motion, Articular - physiology</subject><subject>Short Communication</subject><subject>Signal processing</subject><subject>Sports Medicine</subject><subject>Tendon Injuries - physiopathology</subject><subject>Tendons</subject><subject>Torque</subject><subject>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><subject>Viscoelastic Substances</subject><subject>Viscoelasticity</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KxDAUhYMojo4-gBspgriq5iZt0yxcyOAfDLhRtyFNb52ObTom7cKd7-Ab-iRmmGEGBFc3cL577uGEkBOgl0CpuPKUJgxiSmUMLE9itkMOIOEyzjgTu5s3yBE59H5OKc0Z5PtkBFJCmmf0gFy_1t502Gjf1yYyDnER1TbqZxjNhlbbyL9jg71uonbwpsGfr-8ebdnZaLB1f0T2Kt14PF7PMXm5u32ePMTTp_vHyc00NkmW9XGSa82LqoJUC0i5SZMCIS2xYEB5JWRJtQmqSNOiNEEyRVJlgvJMoyhEVfIxuVj5Llz3MaDvVRtiY9Noi93gleA8gyQNbmNy9oecd4OzIZxilDPJhJABghVkXOe9w0otXN1q96mAqmWzatWsCs2qZbOKhZ3TtfFQtFhuN9ZVBuB8DWhvdFM5bU3tNxxj4U9kDoFjK84Hyb6h2yb8__ovVh2RJQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Ryan, Eric D.</creator><creator>Herda, Trent J.</creator><creator>Costa, Pablo B.</creator><creator>Walter, Ashley A.</creator><creator>Hoge, Katherine M.</creator><creator>Stout, Jeffery R.</creator><creator>Cramer, Joel T.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>Viscoelastic creep in the human skeletal muscle–tendon unit</title><author>Ryan, Eric D. ; Herda, Trent J. ; Costa, Pablo B. ; Walter, Ashley A. ; Hoge, Katherine M. ; Stout, Jeffery R. ; Cramer, Joel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age Factors</topic><topic>Aging - physiology</topic><topic>Ankle Joint - physiology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Electromyography</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Leg - physiology</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Strength - physiology</topic><topic>Muscle Stretching Exercises - methods</topic><topic>Muscle, Skeletal</topic><topic>Neuromuscular diseases</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Posture - physiology</topic><topic>Proprioception</topic><topic>Range of motion</topic><topic>Range of Motion, Articular - physiology</topic><topic>Short Communication</topic><topic>Signal processing</topic><topic>Sports Medicine</topic><topic>Tendon Injuries - physiopathology</topic><topic>Tendons</topic><topic>Torque</topic><topic>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</topic><topic>Viscoelastic Substances</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Eric D.</creatorcontrib><creatorcontrib>Herda, Trent J.</creatorcontrib><creatorcontrib>Costa, Pablo B.</creatorcontrib><creatorcontrib>Walter, Ashley A.</creatorcontrib><creatorcontrib>Hoge, Katherine M.</creatorcontrib><creatorcontrib>Stout, Jeffery R.</creatorcontrib><creatorcontrib>Cramer, Joel T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Eric D.</au><au>Herda, Trent J.</au><au>Costa, Pablo B.</au><au>Walter, Ashley A.</au><au>Hoge, Katherine M.</au><au>Stout, Jeffery R.</au><au>Cramer, Joel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic creep in the human skeletal muscle–tendon unit</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>108</volume><issue>1</issue><spage>207</spage><epage>211</epage><pages>207-211</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>The purposes of the present study were to (1) characterize viscoelastic creep in vivo in the human skeletal muscle–tendon unit and (2) to examine the consistency of these responses during a single 30-s stretch. Twelve volunteers (mean ± SD = 22 ± 3 years; height = 169 ± 11 cm; mass = 70 ± 17 kg) participated in two separate experimental trials. Each trial consisted of a 30-s constant-torque stretch of the plantar flexor muscles. Position (°) values were quantified at every 5-s period (0, 5, 10, 15, 20, 25, and 30 s) and the percent change in position was quantified for each 5-s epoch (0–5, 5–10, 10–15, 15–20, 20–25, and 25–30 s) relative to the total increase in the range of motion. In addition, the intraclass correlation coefficient (ICC) and standard errors of the measurement (SEM) were calculated for test–retest reliability. These results indicated that position increased over the entire 30-s stretch (
P
< 0.05), while the majority of the increases in position (73–85%) occurred during the first 15–20 s. ICC values were
>
0.994 and SEM values (expressed as percentage of the mean) were
<
1.54%. In conclusion, these results demonstrate viscoelastic creep in vivo in the human skeletal muscle–tendon unit and suggest that these responses may be reliable for future studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19915860</pmid><doi>10.1007/s00421-009-1284-2</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-6319 |
ispartof | European journal of applied physiology, 2010-01, Vol.108 (1), p.207-211 |
issn | 1439-6319 1439-6327 |
language | eng |
recordid | cdi_proquest_miscellaneous_733614510 |
source | Springer Nature |
subjects | Age Factors Aging - physiology Ankle Joint - physiology Biological and medical sciences Biomedical and Life Sciences Biomedicine Electromyography Fundamental and applied biological sciences. Psychology Human Physiology Humans Laboratories Leg - physiology Muscle Contraction - physiology Muscle Strength - physiology Muscle Stretching Exercises - methods Muscle, Skeletal Neuromuscular diseases Occupational Medicine/Industrial Medicine Posture - physiology Proprioception Range of motion Range of Motion, Articular - physiology Short Communication Signal processing Sports Medicine Tendon Injuries - physiopathology Tendons Torque Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Viscoelastic Substances Viscoelasticity |
title | Viscoelastic creep in the human skeletal muscle–tendon unit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20creep%20in%20the%20human%20skeletal%20muscle%E2%80%93tendon%20unit&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Ryan,%20Eric%20D.&rft.date=2010-01-01&rft.volume=108&rft.issue=1&rft.spage=207&rft.epage=211&rft.pages=207-211&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-009-1284-2&rft_dat=%3Cproquest_cross%3E1922302661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-48aa3bff15a7153c54be15deb2103f79d0acff1755bdcbe1cb4f67036ae7b7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203292779&rft_id=info:pmid/19915860&rfr_iscdi=true |