Loading…

Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources

The continuing improvement of high-speed area-scan cameras has made possible the construction of parallel optical coherence tomography (OCT) systems that are competitive with the fastest demonstrated swept-source OCT systems. Unfortunately, when imaging through turbid media using a partially coheren...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2010-07, Vol.35 (13), p.2305-2307
Main Authors: DHALLA, Al-Hafeez, MIGACZ, Justin V, IZATT, Joseph A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continuing improvement of high-speed area-scan cameras has made possible the construction of parallel optical coherence tomography (OCT) systems that are competitive with the fastest demonstrated swept-source OCT systems. Unfortunately, when imaging through turbid media using a partially coherent source, parallel OCT suffers resolution loss from coherent multiple scattering, a phenomenon known as crosstalk. We demonstrate the use of a full-field OCT system employing multimode fiber in the illumination arm to reduce the spatial coherence of a partially coherent source. By reducing the spatial coherence area below the system's lateral resolution, we create a spatial coherence gate that rejects these multiply scattered photons. We quantify the image quality and resolution improvement of this method by comparing images of a USAF test chart acquired beneath turbid phantoms using both coherent and incoherent illumination and computing the resulting modulation transfer functions. We demonstrate the feasibility of this method for imaging biological specimens by imaging a Drosophila melanogaster sample.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.35.002305