Loading…

Red-edge-wavelength finely-tunable laser action from new BODIPY dyes

New BODIPY dyes with two 4-formylphenyl, 4-(2,2-dimethoxycarbonylvinyl)phenyl and 4-(2,2-dicyanovinyl)phenyl groups at the 3- and 5-positions have been successfully designed and synthesized via palladium-catalyzed coupling reaction or Knoevenagel-type condensations. Structural modification of the BO...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2010-07, Vol.12 (28), p.7804-7811
Main Authors: ORTIZ, M. J, GARCIA-MORENO, I, AGARRABEITIA, A. R, DURAN-SAMPEDRO, G, COSTELA, A, SASTRE, R, LOPEZ ARBELOA, F, BANUELOS PRIETO, J, ARBELOA, I. López
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New BODIPY dyes with two 4-formylphenyl, 4-(2,2-dimethoxycarbonylvinyl)phenyl and 4-(2,2-dicyanovinyl)phenyl groups at the 3- and 5-positions have been successfully designed and synthesized via palladium-catalyzed coupling reaction or Knoevenagel-type condensations. Structural modification of the BODIPY core via conjugation-extending residues significantly affects the spectroscopy and photophysical properties of the BODIPY fluorophore. These substituents cause the largest bathochromic shift in both absorption and emission spectra, which are shifted toward the red compared to its 4-phenylsubstituted analogue. Additionally, the fluorescence quantum yields and the Stokes shifts are also significantly higher than the corresponding phenyl-substituted dye. New BODIPY dyes have a high laser photostability, superior to that of commercial dyes with laser emission in the same spectral region, such as Perylene Red and Rhodamine 640. The substitution introduced in these derivatives allows to obtain tunable laser emission with a bandwidth of 0.15 cm(-1) and a tuning range of up to 50 nm. So with these three dyes it is possible to cover the spectral range 590-680 nm in a continuous way and with stable laser emission and small linewidth.
ISSN:1463-9076
1463-9084
DOI:10.1039/b925561c