Loading…
Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability
We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the...
Saved in:
Published in: | ACS nano 2010-02, Vol.4 (2), p.869-878 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713 |
---|---|
cites | cdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713 |
container_end_page | 878 |
container_issue | 2 |
container_start_page | 869 |
container_title | ACS nano |
container_volume | 4 |
creator | Tang, Jiang Brzozowski, Lukasz Barkhouse, D. Aaron R Wang, Xihua Debnath, Ratan Wolowiec, Remigiusz Palmiano, Elenita Levina, Larissa Pattantyus-Abraham, Andras G Jamakosmanovic, Damir Sargent, Edward H |
description | We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots. |
doi_str_mv | 10.1021/nn901564q |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733658953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733658953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</originalsourceid><addsrcrecordid>eNptkMtKAzEYhYMotlYXvoBkI-JiNJmZzMVdGesFClVbwd2QySRtykzSJhmxj-BbG2ntytX_c_g4cD4AzjG6wSjEt0rlCJMkXh-APs6jJEBZ8nG4_wnugRNrlwiRNEuTY9ALEUZxRvI--H7tqHJdC--1gy8L7fSnbhyVzEKpoFtwOPpyhrcc_oGFVkIqnygH3_hctvwOzjw37YygjAfFgreS0QZOjJxLZaEWvoPxlZNa-XgoTQCpquFYzhcumDpayUa6zSk4ErSx_Gx3B-D9YTQrnoLx5PG5GI4DGmXIBYJENY6ZH4BrlOWU1SIkAlNUhSLjecL8MIzSmqYxISKlLIyTMOdJRao0jFIcDcDVtndl9Lrj1pWttIw3DVVcd7ZMoyghWU4iT15vSWa0tYaLcmVkS82mxKj8FV_uxXv2YtfaVS2v9-SfaQ9cbgHKbLnUnfEu7D9FPzyEixE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733658953</pqid></control><display><type>article</type><title>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Jiang ; Brzozowski, Lukasz ; Barkhouse, D. Aaron R ; Wang, Xihua ; Debnath, Ratan ; Wolowiec, Remigiusz ; Palmiano, Elenita ; Levina, Larissa ; Pattantyus-Abraham, Andras G ; Jamakosmanovic, Damir ; Sargent, Edward H</creator><creatorcontrib>Tang, Jiang ; Brzozowski, Lukasz ; Barkhouse, D. Aaron R ; Wang, Xihua ; Debnath, Ratan ; Wolowiec, Remigiusz ; Palmiano, Elenita ; Levina, Larissa ; Pattantyus-Abraham, Andras G ; Jamakosmanovic, Damir ; Sargent, Edward H</creatorcontrib><description>We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn901564q</identifier><identifier>PMID: 20104859</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2010-02, Vol.4 (2), p.869-878</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</citedby><cites>FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20104859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Brzozowski, Lukasz</creatorcontrib><creatorcontrib>Barkhouse, D. Aaron R</creatorcontrib><creatorcontrib>Wang, Xihua</creatorcontrib><creatorcontrib>Debnath, Ratan</creatorcontrib><creatorcontrib>Wolowiec, Remigiusz</creatorcontrib><creatorcontrib>Palmiano, Elenita</creatorcontrib><creatorcontrib>Levina, Larissa</creatorcontrib><creatorcontrib>Pattantyus-Abraham, Andras G</creatorcontrib><creatorcontrib>Jamakosmanovic, Damir</creatorcontrib><creatorcontrib>Sargent, Edward H</creatorcontrib><title>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEYhYMotlYXvoBkI-JiNJmZzMVdGesFClVbwd2QySRtykzSJhmxj-BbG2ntytX_c_g4cD4AzjG6wSjEt0rlCJMkXh-APs6jJEBZ8nG4_wnugRNrlwiRNEuTY9ALEUZxRvI--H7tqHJdC--1gy8L7fSnbhyVzEKpoFtwOPpyhrcc_oGFVkIqnygH3_hctvwOzjw37YygjAfFgreS0QZOjJxLZaEWvoPxlZNa-XgoTQCpquFYzhcumDpayUa6zSk4ErSx_Gx3B-D9YTQrnoLx5PG5GI4DGmXIBYJENY6ZH4BrlOWU1SIkAlNUhSLjecL8MIzSmqYxISKlLIyTMOdJRao0jFIcDcDVtndl9Lrj1pWttIw3DVVcd7ZMoyghWU4iT15vSWa0tYaLcmVkS82mxKj8FV_uxXv2YtfaVS2v9-SfaQ9cbgHKbLnUnfEu7D9FPzyEixE</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Tang, Jiang</creator><creator>Brzozowski, Lukasz</creator><creator>Barkhouse, D. Aaron R</creator><creator>Wang, Xihua</creator><creator>Debnath, Ratan</creator><creator>Wolowiec, Remigiusz</creator><creator>Palmiano, Elenita</creator><creator>Levina, Larissa</creator><creator>Pattantyus-Abraham, Andras G</creator><creator>Jamakosmanovic, Damir</creator><creator>Sargent, Edward H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100223</creationdate><title>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</title><author>Tang, Jiang ; Brzozowski, Lukasz ; Barkhouse, D. Aaron R ; Wang, Xihua ; Debnath, Ratan ; Wolowiec, Remigiusz ; Palmiano, Elenita ; Levina, Larissa ; Pattantyus-Abraham, Andras G ; Jamakosmanovic, Damir ; Sargent, Edward H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Brzozowski, Lukasz</creatorcontrib><creatorcontrib>Barkhouse, D. Aaron R</creatorcontrib><creatorcontrib>Wang, Xihua</creatorcontrib><creatorcontrib>Debnath, Ratan</creatorcontrib><creatorcontrib>Wolowiec, Remigiusz</creatorcontrib><creatorcontrib>Palmiano, Elenita</creatorcontrib><creatorcontrib>Levina, Larissa</creatorcontrib><creatorcontrib>Pattantyus-Abraham, Andras G</creatorcontrib><creatorcontrib>Jamakosmanovic, Damir</creatorcontrib><creatorcontrib>Sargent, Edward H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jiang</au><au>Brzozowski, Lukasz</au><au>Barkhouse, D. Aaron R</au><au>Wang, Xihua</au><au>Debnath, Ratan</au><au>Wolowiec, Remigiusz</au><au>Palmiano, Elenita</au><au>Levina, Larissa</au><au>Pattantyus-Abraham, Andras G</au><au>Jamakosmanovic, Damir</au><au>Sargent, Edward H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>4</volume><issue>2</issue><spage>869</spage><epage>878</epage><pages>869-878</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20104859</pmid><doi>10.1021/nn901564q</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2010-02, Vol.4 (2), p.869-878 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_733658953 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Dot%20Photovoltaics%20in%20the%20Extreme%20Quantum%20Confinement%20Regime:%20The%20Surface-Chemical%20Origins%20of%20Exceptional%20Air-%20and%20Light-Stability&rft.jtitle=ACS%20nano&rft.au=Tang,%20Jiang&rft.date=2010-02-23&rft.volume=4&rft.issue=2&rft.spage=869&rft.epage=878&rft.pages=869-878&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn901564q&rft_dat=%3Cproquest_cross%3E733658953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733658953&rft_id=info:pmid/20104859&rfr_iscdi=true |