Loading…

Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability

We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2010-02, Vol.4 (2), p.869-878
Main Authors: Tang, Jiang, Brzozowski, Lukasz, Barkhouse, D. Aaron R, Wang, Xihua, Debnath, Ratan, Wolowiec, Remigiusz, Palmiano, Elenita, Levina, Larissa, Pattantyus-Abraham, Andras G, Jamakosmanovic, Damir, Sargent, Edward H
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713
cites cdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713
container_end_page 878
container_issue 2
container_start_page 869
container_title ACS nano
container_volume 4
creator Tang, Jiang
Brzozowski, Lukasz
Barkhouse, D. Aaron R
Wang, Xihua
Debnath, Ratan
Wolowiec, Remigiusz
Palmiano, Elenita
Levina, Larissa
Pattantyus-Abraham, Andras G
Jamakosmanovic, Damir
Sargent, Edward H
description We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.
doi_str_mv 10.1021/nn901564q
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733658953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733658953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</originalsourceid><addsrcrecordid>eNptkMtKAzEYhYMotlYXvoBkI-JiNJmZzMVdGesFClVbwd2QySRtykzSJhmxj-BbG2ntytX_c_g4cD4AzjG6wSjEt0rlCJMkXh-APs6jJEBZ8nG4_wnugRNrlwiRNEuTY9ALEUZxRvI--H7tqHJdC--1gy8L7fSnbhyVzEKpoFtwOPpyhrcc_oGFVkIqnygH3_hctvwOzjw37YygjAfFgreS0QZOjJxLZaEWvoPxlZNa-XgoTQCpquFYzhcumDpayUa6zSk4ErSx_Gx3B-D9YTQrnoLx5PG5GI4DGmXIBYJENY6ZH4BrlOWU1SIkAlNUhSLjecL8MIzSmqYxISKlLIyTMOdJRao0jFIcDcDVtndl9Lrj1pWttIw3DVVcd7ZMoyghWU4iT15vSWa0tYaLcmVkS82mxKj8FV_uxXv2YtfaVS2v9-SfaQ9cbgHKbLnUnfEu7D9FPzyEixE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733658953</pqid></control><display><type>article</type><title>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Jiang ; Brzozowski, Lukasz ; Barkhouse, D. Aaron R ; Wang, Xihua ; Debnath, Ratan ; Wolowiec, Remigiusz ; Palmiano, Elenita ; Levina, Larissa ; Pattantyus-Abraham, Andras G ; Jamakosmanovic, Damir ; Sargent, Edward H</creator><creatorcontrib>Tang, Jiang ; Brzozowski, Lukasz ; Barkhouse, D. Aaron R ; Wang, Xihua ; Debnath, Ratan ; Wolowiec, Remigiusz ; Palmiano, Elenita ; Levina, Larissa ; Pattantyus-Abraham, Andras G ; Jamakosmanovic, Damir ; Sargent, Edward H</creatorcontrib><description>We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn901564q</identifier><identifier>PMID: 20104859</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2010-02, Vol.4 (2), p.869-878</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</citedby><cites>FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20104859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Brzozowski, Lukasz</creatorcontrib><creatorcontrib>Barkhouse, D. Aaron R</creatorcontrib><creatorcontrib>Wang, Xihua</creatorcontrib><creatorcontrib>Debnath, Ratan</creatorcontrib><creatorcontrib>Wolowiec, Remigiusz</creatorcontrib><creatorcontrib>Palmiano, Elenita</creatorcontrib><creatorcontrib>Levina, Larissa</creatorcontrib><creatorcontrib>Pattantyus-Abraham, Andras G</creatorcontrib><creatorcontrib>Jamakosmanovic, Damir</creatorcontrib><creatorcontrib>Sargent, Edward H</creatorcontrib><title>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEYhYMotlYXvoBkI-JiNJmZzMVdGesFClVbwd2QySRtykzSJhmxj-BbG2ntytX_c_g4cD4AzjG6wSjEt0rlCJMkXh-APs6jJEBZ8nG4_wnugRNrlwiRNEuTY9ALEUZxRvI--H7tqHJdC--1gy8L7fSnbhyVzEKpoFtwOPpyhrcc_oGFVkIqnygH3_hctvwOzjw37YygjAfFgreS0QZOjJxLZaEWvoPxlZNa-XgoTQCpquFYzhcumDpayUa6zSk4ErSx_Gx3B-D9YTQrnoLx5PG5GI4DGmXIBYJENY6ZH4BrlOWU1SIkAlNUhSLjecL8MIzSmqYxISKlLIyTMOdJRao0jFIcDcDVtndl9Lrj1pWttIw3DVVcd7ZMoyghWU4iT15vSWa0tYaLcmVkS82mxKj8FV_uxXv2YtfaVS2v9-SfaQ9cbgHKbLnUnfEu7D9FPzyEixE</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Tang, Jiang</creator><creator>Brzozowski, Lukasz</creator><creator>Barkhouse, D. Aaron R</creator><creator>Wang, Xihua</creator><creator>Debnath, Ratan</creator><creator>Wolowiec, Remigiusz</creator><creator>Palmiano, Elenita</creator><creator>Levina, Larissa</creator><creator>Pattantyus-Abraham, Andras G</creator><creator>Jamakosmanovic, Damir</creator><creator>Sargent, Edward H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100223</creationdate><title>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</title><author>Tang, Jiang ; Brzozowski, Lukasz ; Barkhouse, D. Aaron R ; Wang, Xihua ; Debnath, Ratan ; Wolowiec, Remigiusz ; Palmiano, Elenita ; Levina, Larissa ; Pattantyus-Abraham, Andras G ; Jamakosmanovic, Damir ; Sargent, Edward H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Brzozowski, Lukasz</creatorcontrib><creatorcontrib>Barkhouse, D. Aaron R</creatorcontrib><creatorcontrib>Wang, Xihua</creatorcontrib><creatorcontrib>Debnath, Ratan</creatorcontrib><creatorcontrib>Wolowiec, Remigiusz</creatorcontrib><creatorcontrib>Palmiano, Elenita</creatorcontrib><creatorcontrib>Levina, Larissa</creatorcontrib><creatorcontrib>Pattantyus-Abraham, Andras G</creatorcontrib><creatorcontrib>Jamakosmanovic, Damir</creatorcontrib><creatorcontrib>Sargent, Edward H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jiang</au><au>Brzozowski, Lukasz</au><au>Barkhouse, D. Aaron R</au><au>Wang, Xihua</au><au>Debnath, Ratan</au><au>Wolowiec, Remigiusz</au><au>Palmiano, Elenita</au><au>Levina, Larissa</au><au>Pattantyus-Abraham, Andras G</au><au>Jamakosmanovic, Damir</au><au>Sargent, Edward H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>4</volume><issue>2</issue><spage>869</spage><epage>878</epage><pages>869-878</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20104859</pmid><doi>10.1021/nn901564q</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2010-02, Vol.4 (2), p.869-878
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_733658953
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Dot%20Photovoltaics%20in%20the%20Extreme%20Quantum%20Confinement%20Regime:%20The%20Surface-Chemical%20Origins%20of%20Exceptional%20Air-%20and%20Light-Stability&rft.jtitle=ACS%20nano&rft.au=Tang,%20Jiang&rft.date=2010-02-23&rft.volume=4&rft.issue=2&rft.spage=869&rft.epage=878&rft.pages=869-878&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn901564q&rft_dat=%3Cproquest_cross%3E733658953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a380t-f53d14c0101d089acdf25f1a0b2f8e96c048107da7455f7ac24629e6b5b723713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733658953&rft_id=info:pmid/20104859&rfr_iscdi=true