Loading…

The application of nanofibrous scaffolds in neural tissue engineering

The repairing process in the nervous system is complicated and brings great challenges to researchers. Tissue engineering scaffolds provide an alternative approach for neural regeneration. Sub-micron and nano-scale fibrous scaffolds which mimic the topography of natural extracellular matrix (ECM) ca...

Full description

Saved in:
Bibliographic Details
Published in:Advanced drug delivery reviews 2009-10, Vol.61 (12), p.1055-1064
Main Authors: Cao, Haoqing, Liu, Ting, Chew, Sing Yian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The repairing process in the nervous system is complicated and brings great challenges to researchers. Tissue engineering scaffolds provide an alternative approach for neural regeneration. Sub-micron and nano-scale fibrous scaffolds which mimic the topography of natural extracellular matrix (ECM) can be potential scaffold candidates for neural tissue engineering. Two fiber-fabrication methods have been explored in the field of nerve regeneration: electrospinning and self-assembly. Electrospinning produces fibers with diameters ranging from several micrometers to hundreds of nanometers. The fibrous nerve conduits can be introduced at lesion sites by implantation. Self-assembly fibers have diameters of tens of nanometers and can be injected for central nervous system (CNS) injury repair. Both fibrous scaffolds would enhance neurite extension and axon regrowth. These functional nanofibrous scaffolds can serve as powerful tools for neural tissue engineering.
ISSN:0169-409X
1872-8294
DOI:10.1016/j.addr.2009.07.009