Loading…

Catanionic surfactant vesicles for electrostatic molecular sequestration and separation

Mixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surface...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2009-01, Vol.11 (41), p.9315-9325
Main Authors: LIOI, Sara B, XIANG WANG, ISLAM, Mohammad R, DANOFF, Emily J, ENGLISH, Douglas S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3
cites cdi_FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3
container_end_page 9325
container_issue 41
container_start_page 9315
container_title Physical chemistry chemical physics : PCCP
container_volume 11
creator LIOI, Sara B
XIANG WANG
ISLAM, Mohammad R
DANOFF, Emily J
ENGLISH, Douglas S
description Mixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surfaces of catanionic, unilamellar vesicles which form spontaneously in mixtures of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT). Our group, along with others, has shown that organic ions and polyelectrolytes will bind to the exterior surface of oppositely charged catanionic vesicles through interactions with unpaired ionic surfactants present in the vesicle bilayer. The electrostatic sequestration of organic ions with catanionic vesicles is extremely efficient with excellent long-term stability and can be used to perform separations on mixtures of charged organic solutes. Using regular solution theory extended to vesicle-forming surfactant mixtures, we can understand how the composition of the bilayer changes with surfactant dilution, and we study this effect using fluorescence correlation spectroscopy (FCS). We employ FCS to make sensitive measurements of bilayer adsorption and compare the adsorption of a small molecular probe with that of a single-stranded, dye-labeled DNA molecule. From these FCS studies, adsorption isotherms can be obtained that report on the relative binding strengths of the two systems. The results show that DNA binds much more strongly to the exterior surface of positively charged catanionic vesicles, and can even stabilize vesicles at very low surfactant concentrations near the critical aggregation concentration (cac).
doi_str_mv 10.1039/b908523h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733682641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733682641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYMo7roK_gXSi-ilms82PcriFyx4UTyWySTBSrddk1bwvze6dT3NvMePx8wj5JTRK0ZFdW0qqhUXb3tkzmQh8iTl_m4vixk5ivGdUsoUE4dkxiotqGB8Tl6XMEDX9F2DWRyDB0xyyD5dbLB1MfN9yFzrcAh9HGBI1LpPcmwhZNF9jC4OIdl9l0Fnk7OBrTwmBx7a6E6muSAvd7fPy4d89XT_uLxZ5SgEH3LGjDBGg0IvwVmNUhkLqCWayklvtFEMS49coaOWGonSpVEyq7VV1ogFudjmbkL_e029biK6toXO9WOsSyEKzQvJEnm5JTG9EoPz9SY0awhfNaP1T4v1X4sJPZtCR7N29h-cakvA-QRARGh9gA6buOM4Z5zTUolvYoJ89A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733682641</pqid></control><display><type>article</type><title>Catanionic surfactant vesicles for electrostatic molecular sequestration and separation</title><source>Royal Society of Chemistry</source><creator>LIOI, Sara B ; XIANG WANG ; ISLAM, Mohammad R ; DANOFF, Emily J ; ENGLISH, Douglas S</creator><creatorcontrib>LIOI, Sara B ; XIANG WANG ; ISLAM, Mohammad R ; DANOFF, Emily J ; ENGLISH, Douglas S</creatorcontrib><description>Mixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surfaces of catanionic, unilamellar vesicles which form spontaneously in mixtures of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT). Our group, along with others, has shown that organic ions and polyelectrolytes will bind to the exterior surface of oppositely charged catanionic vesicles through interactions with unpaired ionic surfactants present in the vesicle bilayer. The electrostatic sequestration of organic ions with catanionic vesicles is extremely efficient with excellent long-term stability and can be used to perform separations on mixtures of charged organic solutes. Using regular solution theory extended to vesicle-forming surfactant mixtures, we can understand how the composition of the bilayer changes with surfactant dilution, and we study this effect using fluorescence correlation spectroscopy (FCS). We employ FCS to make sensitive measurements of bilayer adsorption and compare the adsorption of a small molecular probe with that of a single-stranded, dye-labeled DNA molecule. From these FCS studies, adsorption isotherms can be obtained that report on the relative binding strengths of the two systems. The results show that DNA binds much more strongly to the exterior surface of positively charged catanionic vesicles, and can even stabilize vesicles at very low surfactant concentrations near the critical aggregation concentration (cac).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/b908523h</identifier><identifier>PMID: 19830312</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Benzenesulfonates - chemistry ; Cations ; Cetrimonium Compounds - chemistry ; Chemistry ; Colloidal state and disperse state ; Coloring Agents - chemistry ; DNA - chemistry ; DNA - metabolism ; Electrolytes - chemistry ; Electrolytes - isolation &amp; purification ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Membranes ; Spectrometry, Fluorescence ; Static Electricity ; Surface physical chemistry ; Surface-Active Agents - chemistry ; Surface-Active Agents - metabolism ; Thermodynamics ; Unilamellar Liposomes - chemistry ; Unilamellar Liposomes - metabolism</subject><ispartof>Physical chemistry chemical physics : PCCP, 2009-01, Vol.11 (41), p.9315-9325</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3</citedby><cites>FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22122075$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19830312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIOI, Sara B</creatorcontrib><creatorcontrib>XIANG WANG</creatorcontrib><creatorcontrib>ISLAM, Mohammad R</creatorcontrib><creatorcontrib>DANOFF, Emily J</creatorcontrib><creatorcontrib>ENGLISH, Douglas S</creatorcontrib><title>Catanionic surfactant vesicles for electrostatic molecular sequestration and separation</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Mixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surfaces of catanionic, unilamellar vesicles which form spontaneously in mixtures of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT). Our group, along with others, has shown that organic ions and polyelectrolytes will bind to the exterior surface of oppositely charged catanionic vesicles through interactions with unpaired ionic surfactants present in the vesicle bilayer. The electrostatic sequestration of organic ions with catanionic vesicles is extremely efficient with excellent long-term stability and can be used to perform separations on mixtures of charged organic solutes. Using regular solution theory extended to vesicle-forming surfactant mixtures, we can understand how the composition of the bilayer changes with surfactant dilution, and we study this effect using fluorescence correlation spectroscopy (FCS). We employ FCS to make sensitive measurements of bilayer adsorption and compare the adsorption of a small molecular probe with that of a single-stranded, dye-labeled DNA molecule. From these FCS studies, adsorption isotherms can be obtained that report on the relative binding strengths of the two systems. The results show that DNA binds much more strongly to the exterior surface of positively charged catanionic vesicles, and can even stabilize vesicles at very low surfactant concentrations near the critical aggregation concentration (cac).</description><subject>Adsorption</subject><subject>Benzenesulfonates - chemistry</subject><subject>Cations</subject><subject>Cetrimonium Compounds - chemistry</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Coloring Agents - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Electrolytes - chemistry</subject><subject>Electrolytes - isolation &amp; purification</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Spectrometry, Fluorescence</subject><subject>Static Electricity</subject><subject>Surface physical chemistry</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - metabolism</subject><subject>Thermodynamics</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Unilamellar Liposomes - metabolism</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAQxYMo7roK_gXSi-ilms82PcriFyx4UTyWySTBSrddk1bwvze6dT3NvMePx8wj5JTRK0ZFdW0qqhUXb3tkzmQh8iTl_m4vixk5ivGdUsoUE4dkxiotqGB8Tl6XMEDX9F2DWRyDB0xyyD5dbLB1MfN9yFzrcAh9HGBI1LpPcmwhZNF9jC4OIdl9l0Fnk7OBrTwmBx7a6E6muSAvd7fPy4d89XT_uLxZ5SgEH3LGjDBGg0IvwVmNUhkLqCWayklvtFEMS49coaOWGonSpVEyq7VV1ogFudjmbkL_e029biK6toXO9WOsSyEKzQvJEnm5JTG9EoPz9SY0awhfNaP1T4v1X4sJPZtCR7N29h-cakvA-QRARGh9gA6buOM4Z5zTUolvYoJ89A</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>LIOI, Sara B</creator><creator>XIANG WANG</creator><creator>ISLAM, Mohammad R</creator><creator>DANOFF, Emily J</creator><creator>ENGLISH, Douglas S</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Catanionic surfactant vesicles for electrostatic molecular sequestration and separation</title><author>LIOI, Sara B ; XIANG WANG ; ISLAM, Mohammad R ; DANOFF, Emily J ; ENGLISH, Douglas S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Benzenesulfonates - chemistry</topic><topic>Cations</topic><topic>Cetrimonium Compounds - chemistry</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Coloring Agents - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Electrolytes - chemistry</topic><topic>Electrolytes - isolation &amp; purification</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Spectrometry, Fluorescence</topic><topic>Static Electricity</topic><topic>Surface physical chemistry</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - metabolism</topic><topic>Thermodynamics</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Unilamellar Liposomes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIOI, Sara B</creatorcontrib><creatorcontrib>XIANG WANG</creatorcontrib><creatorcontrib>ISLAM, Mohammad R</creatorcontrib><creatorcontrib>DANOFF, Emily J</creatorcontrib><creatorcontrib>ENGLISH, Douglas S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIOI, Sara B</au><au>XIANG WANG</au><au>ISLAM, Mohammad R</au><au>DANOFF, Emily J</au><au>ENGLISH, Douglas S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catanionic surfactant vesicles for electrostatic molecular sequestration and separation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>41</issue><spage>9315</spage><epage>9325</epage><pages>9315-9325</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Mixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surfaces of catanionic, unilamellar vesicles which form spontaneously in mixtures of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT). Our group, along with others, has shown that organic ions and polyelectrolytes will bind to the exterior surface of oppositely charged catanionic vesicles through interactions with unpaired ionic surfactants present in the vesicle bilayer. The electrostatic sequestration of organic ions with catanionic vesicles is extremely efficient with excellent long-term stability and can be used to perform separations on mixtures of charged organic solutes. Using regular solution theory extended to vesicle-forming surfactant mixtures, we can understand how the composition of the bilayer changes with surfactant dilution, and we study this effect using fluorescence correlation spectroscopy (FCS). We employ FCS to make sensitive measurements of bilayer adsorption and compare the adsorption of a small molecular probe with that of a single-stranded, dye-labeled DNA molecule. From these FCS studies, adsorption isotherms can be obtained that report on the relative binding strengths of the two systems. The results show that DNA binds much more strongly to the exterior surface of positively charged catanionic vesicles, and can even stabilize vesicles at very low surfactant concentrations near the critical aggregation concentration (cac).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>19830312</pmid><doi>10.1039/b908523h</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2009-01, Vol.11 (41), p.9315-9325
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_733682641
source Royal Society of Chemistry
subjects Adsorption
Benzenesulfonates - chemistry
Cations
Cetrimonium Compounds - chemistry
Chemistry
Colloidal state and disperse state
Coloring Agents - chemistry
DNA - chemistry
DNA - metabolism
Electrolytes - chemistry
Electrolytes - isolation & purification
Exact sciences and technology
General and physical chemistry
Kinetics
Membranes
Spectrometry, Fluorescence
Static Electricity
Surface physical chemistry
Surface-Active Agents - chemistry
Surface-Active Agents - metabolism
Thermodynamics
Unilamellar Liposomes - chemistry
Unilamellar Liposomes - metabolism
title Catanionic surfactant vesicles for electrostatic molecular sequestration and separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catanionic%20surfactant%20vesicles%20for%20electrostatic%20molecular%20sequestration%20and%20separation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=LIOI,%20Sara%20B&rft.date=2009-01-01&rft.volume=11&rft.issue=41&rft.spage=9315&rft.epage=9325&rft.pages=9315-9325&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/b908523h&rft_dat=%3Cproquest_cross%3E733682641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-11b3bb8a5cf4aed8c45bdac84cb9e4fb8b51c7fc25ce0d0b4c4ed0b71d88d5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733682641&rft_id=info:pmid/19830312&rfr_iscdi=true