Loading…

Single photon emission-computed tomography (SPECT) for functional investigation of the proximal tubule in conscious mice

Noninvasive analysis of renal function in conscious mice is necessary to optimize the use of mouse models. In this study, we evaluated whether single photon emission-computed tomography (SPECT) using specific radionuclear tracers can be used to analyze changes in renal proximal tubule functions. The...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Renal physiology 2010-02, Vol.298 (2), p.F454-F460
Main Authors: Jouret, François, Walrand, Stéphan, Parreira, Kleber S, Courtoy, Pierre J, Pauwels, Stanislas, Devuyst, Olivier, Jamar, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noninvasive analysis of renal function in conscious mice is necessary to optimize the use of mouse models. In this study, we evaluated whether single photon emission-computed tomography (SPECT) using specific radionuclear tracers can be used to analyze changes in renal proximal tubule functions. The tracers included (99m)TC- dimercaptosuccinic acid ((99m)Tc-DMSA), which is used for cortex imaging; (99m)Tc-mercaptoacetyltriglycine ((99m)Tc-MAG3), used for dynamic renography; and (123)I-beta(2)-microglobulin, which monitors receptor-mediated endocytosis. (99m)Tc-DMSA SPECT imaging was shown to delineate the functional renal cortex with a approximately 1-mm spatial resolution and accumulated in the cortex reaching a plateau 5 h after injection. The cortical uptake of (99m)Tc-DMSA was abolished in Clcn5 knockout mice, a model of proximal tubule dysfunction. Dynamic renography with (99m)Tc-MAG3 in conscious mice demonstrated rapid extraction from blood, renal accumulation, and subsequent tubular secretion. Anesthesia induced a significant delay in the (99m)Tc-MAG3 clearance. The tubular reabsorption of (123)I-beta(2)-microglobulin was strongly impaired in the Clcn5 knockout mice, with defective tubular processing and loss of the native tracer in urine, reflecting proximal tubule dysfunction. Longitudinal studies in a model of cisplatin-induced acute tubular injury revealed a correlation between tubular recovery and (123)I-beta(2)-microglobulin uptake. These data show that SPECT imaging with well-validated radiotracers allows in vivo investigations of specific proximal tubule functions in conscious mice.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00413.2009