Loading…
Fitting spending functions
Group sequential monitoring is used to provide guidance on stopping a clinical trial in progress based on interim evaluation of its efficacy objectives. A trial could stop because an experimental regimen (1) is efficacious, (2) lacks any sign of efficacy, or (3) is specifically less efficacious than...
Saved in:
Published in: | Statistics in medicine 2010-02, Vol.29 (3), p.321-327 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283 |
---|---|
cites | cdi_FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283 |
container_end_page | 327 |
container_issue | 3 |
container_start_page | 321 |
container_title | Statistics in medicine |
container_volume | 29 |
creator | Anderson, Keaven M. Clark, Jason B. |
description | Group sequential monitoring is used to provide guidance on stopping a clinical trial in progress based on interim evaluation of its efficacy objectives. A trial could stop because an experimental regimen (1) is efficacious, (2) lacks any sign of efficacy, or (3) is specifically less efficacious than a control. Group sequential methods using α‐ and β‐spending functions (Biometrika 1983; 70:659–663) are often used to create stopping boundaries for test statistics for efficacy hypotheses computed at interim analyses. This paper explores fitting α‐ and β‐spending functions that have specific values at specific interim analyses. Commonly used one‐parameter families may not provide an adequate fit to more than one desired critical value. We define new one‐ and two‐parameter families to provide additional flexibility along with examples to demonstrate their usefulness. The logistic family is one of these two‐parameter families, which has been applied in several trials. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.3737 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733700143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943330801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283</originalsourceid><addsrcrecordid>eNp10M1LwzAYBvAgiptT8OxBxIteOt83aZr2KNN9wFSYisfQpqlk9mNrWnT_vRkrCoKnBPLjycNDyCnCEAHojTXFkAkm9kgfIRIeUB7ukz5QIbxAIO-RI2uXAIicikPSwyj0KUTYJ2dj0zSmfL-wK12m20vWlqoxVWmPyUEW51afdOeAvI7vX0ZTb_40mY1u555iIRce80UUhwkVmqKvhB8LVEmCLPMDlSANeRbEKagUtGuDKYgkyVAx930UME5DNiBXu9xVXa1bbRtZGKt0nselrlorBWPCVfeZk5d_5LJq69KVk5Qy9JFzcOh6h1RdWVvrTK5qU8T1RiLI7VrSrSW3azl63uW1SaHTX9jN44C3A58m15t_g-Tz7KEL7Lyxjf768XH9IQP3zuXb40TSxQLolN1JYN8cKX7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223141550</pqid></control><display><type>article</type><title>Fitting spending functions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Anderson, Keaven M. ; Clark, Jason B.</creator><creatorcontrib>Anderson, Keaven M. ; Clark, Jason B.</creatorcontrib><description>Group sequential monitoring is used to provide guidance on stopping a clinical trial in progress based on interim evaluation of its efficacy objectives. A trial could stop because an experimental regimen (1) is efficacious, (2) lacks any sign of efficacy, or (3) is specifically less efficacious than a control. Group sequential methods using α‐ and β‐spending functions (Biometrika 1983; 70:659–663) are often used to create stopping boundaries for test statistics for efficacy hypotheses computed at interim analyses. This paper explores fitting α‐ and β‐spending functions that have specific values at specific interim analyses. Commonly used one‐parameter families may not provide an adequate fit to more than one desired critical value. We define new one‐ and two‐parameter families to provide additional flexibility along with examples to demonstrate their usefulness. The logistic family is one of these two‐parameter families, which has been applied in several trials. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3737</identifier><identifier>PMID: 19842091</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Clinical trials ; Clinical Trials as Topic - standards ; Decision Making ; design ; Flexibility ; group sequential methods ; Humans ; Logistic Models ; spending function ; Statistical analysis</subject><ispartof>Statistics in medicine, 2010-02, Vol.29 (3), p.321-327</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><rights>(c) 2009 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Feb 10, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283</citedby><cites>FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19842091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Keaven M.</creatorcontrib><creatorcontrib>Clark, Jason B.</creatorcontrib><title>Fitting spending functions</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Group sequential monitoring is used to provide guidance on stopping a clinical trial in progress based on interim evaluation of its efficacy objectives. A trial could stop because an experimental regimen (1) is efficacious, (2) lacks any sign of efficacy, or (3) is specifically less efficacious than a control. Group sequential methods using α‐ and β‐spending functions (Biometrika 1983; 70:659–663) are often used to create stopping boundaries for test statistics for efficacy hypotheses computed at interim analyses. This paper explores fitting α‐ and β‐spending functions that have specific values at specific interim analyses. Commonly used one‐parameter families may not provide an adequate fit to more than one desired critical value. We define new one‐ and two‐parameter families to provide additional flexibility along with examples to demonstrate their usefulness. The logistic family is one of these two‐parameter families, which has been applied in several trials. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>Clinical trials</subject><subject>Clinical Trials as Topic - standards</subject><subject>Decision Making</subject><subject>design</subject><subject>Flexibility</subject><subject>group sequential methods</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>spending function</subject><subject>Statistical analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYBvAgiptT8OxBxIteOt83aZr2KNN9wFSYisfQpqlk9mNrWnT_vRkrCoKnBPLjycNDyCnCEAHojTXFkAkm9kgfIRIeUB7ukz5QIbxAIO-RI2uXAIicikPSwyj0KUTYJ2dj0zSmfL-wK12m20vWlqoxVWmPyUEW51afdOeAvI7vX0ZTb_40mY1u555iIRce80UUhwkVmqKvhB8LVEmCLPMDlSANeRbEKagUtGuDKYgkyVAx930UME5DNiBXu9xVXa1bbRtZGKt0nselrlorBWPCVfeZk5d_5LJq69KVk5Qy9JFzcOh6h1RdWVvrTK5qU8T1RiLI7VrSrSW3azl63uW1SaHTX9jN44C3A58m15t_g-Tz7KEL7Lyxjf768XH9IQP3zuXb40TSxQLolN1JYN8cKX7o</recordid><startdate>20100210</startdate><enddate>20100210</enddate><creator>Anderson, Keaven M.</creator><creator>Clark, Jason B.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20100210</creationdate><title>Fitting spending functions</title><author>Anderson, Keaven M. ; Clark, Jason B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Clinical trials</topic><topic>Clinical Trials as Topic - standards</topic><topic>Decision Making</topic><topic>design</topic><topic>Flexibility</topic><topic>group sequential methods</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>spending function</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Keaven M.</creatorcontrib><creatorcontrib>Clark, Jason B.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Keaven M.</au><au>Clark, Jason B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting spending functions</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2010-02-10</date><risdate>2010</risdate><volume>29</volume><issue>3</issue><spage>321</spage><epage>327</epage><pages>321-327</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Group sequential monitoring is used to provide guidance on stopping a clinical trial in progress based on interim evaluation of its efficacy objectives. A trial could stop because an experimental regimen (1) is efficacious, (2) lacks any sign of efficacy, or (3) is specifically less efficacious than a control. Group sequential methods using α‐ and β‐spending functions (Biometrika 1983; 70:659–663) are often used to create stopping boundaries for test statistics for efficacy hypotheses computed at interim analyses. This paper explores fitting α‐ and β‐spending functions that have specific values at specific interim analyses. Commonly used one‐parameter families may not provide an adequate fit to more than one desired critical value. We define new one‐ and two‐parameter families to provide additional flexibility along with examples to demonstrate their usefulness. The logistic family is one of these two‐parameter families, which has been applied in several trials. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>19842091</pmid><doi>10.1002/sim.3737</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2010-02, Vol.29 (3), p.321-327 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_733700143 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Clinical trials Clinical Trials as Topic - standards Decision Making design Flexibility group sequential methods Humans Logistic Models spending function Statistical analysis |
title | Fitting spending functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20spending%20functions&rft.jtitle=Statistics%20in%20medicine&rft.au=Anderson,%20Keaven%20M.&rft.date=2010-02-10&rft.volume=29&rft.issue=3&rft.spage=321&rft.epage=327&rft.pages=321-327&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.3737&rft_dat=%3Cproquest_cross%3E1943330801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3857-3479a8b27e214c74a71cbb13f46cb1285f6ad0cd0e2771d07bbf1c32099635283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223141550&rft_id=info:pmid/19842091&rfr_iscdi=true |