Loading…

Lithium niobate photonic wires

LN photonic wires of cross-section dimensions down to 1 x 0.73 microm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 microm wavelength a...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2009-12, Vol.17 (26), p.24261-24268
Main Authors: Hu, H, Ricken, R, Sohler, W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53
cites cdi_FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53
container_end_page 24268
container_issue 26
container_start_page 24261
container_title Optics express
container_volume 17
creator Hu, H
Ricken, R
Sohler, W
description LN photonic wires of cross-section dimensions down to 1 x 0.73 microm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 microm wavelength and compared with simulation results. Moreover, effective mode indices and end face reflectivities were numerically evaluated. The waveguide of 1 microm top width is the smallest LN photonic wire reported to date; it has a mode size of approximately 0.4 microm2 (0.5 microm2) only and propagation losses of 9.9 dB/cm (12.9 dB/cm) for qTM (qTE) polarization.
doi_str_mv 10.1364/OE.17.024261
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733714891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733714891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53</originalsourceid><addsrcrecordid>eNpNkEtLxDAUhYMozji6cz3Mzo2tebVJlzLUBxS60XVI2hsm0pdJi_jv7dBRXN0D9-Mc-BC6JTgmLOUPZR4TEWPKaUrO0JrgjEccS3H-L6_QVQgfGBMuMnGJVhTjhBIm1mhbuPHgpnbXud7oEXbDoR_7zlW7L-chXKMLq5sAN6e7Qe9P-dv-JSrK59f9YxFVTJAxSqyW0goGxhhprDE8ExbSBHiidTp_bMVNbTVYCZiyqqbYQg21kZnlWidsg-6W3sH3nxOEUbUuVNA0uoN-CkqweYfLjMzk_UJWvg_Bg1WDd63234pgdRSiylwRoRYhM749FU-mhfoP_jXAfgDDkVuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733714891</pqid></control><display><type>article</type><title>Lithium niobate photonic wires</title><source>EZB Electronic Journals Library</source><creator>Hu, H ; Ricken, R ; Sohler, W</creator><creatorcontrib>Hu, H ; Ricken, R ; Sohler, W</creatorcontrib><description>LN photonic wires of cross-section dimensions down to 1 x 0.73 microm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 microm wavelength and compared with simulation results. Moreover, effective mode indices and end face reflectivities were numerically evaluated. The waveguide of 1 microm top width is the smallest LN photonic wire reported to date; it has a mode size of approximately 0.4 microm2 (0.5 microm2) only and propagation losses of 9.9 dB/cm (12.9 dB/cm) for qTM (qTE) polarization.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.17.024261</identifier><identifier>PMID: 20052137</identifier><language>eng</language><publisher>United States</publisher><subject>Computer-Aided Design ; Equipment Design ; Equipment Failure Analysis ; Materials Testing ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Niobium - chemistry ; Optical Devices ; Oxides - chemistry ; Photons ; Refractometry - instrumentation ; Scattering, Radiation</subject><ispartof>Optics express, 2009-12, Vol.17 (26), p.24261-24268</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53</citedby><cites>FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20052137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, H</creatorcontrib><creatorcontrib>Ricken, R</creatorcontrib><creatorcontrib>Sohler, W</creatorcontrib><title>Lithium niobate photonic wires</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>LN photonic wires of cross-section dimensions down to 1 x 0.73 microm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 microm wavelength and compared with simulation results. Moreover, effective mode indices and end face reflectivities were numerically evaluated. The waveguide of 1 microm top width is the smallest LN photonic wire reported to date; it has a mode size of approximately 0.4 microm2 (0.5 microm2) only and propagation losses of 9.9 dB/cm (12.9 dB/cm) for qTM (qTE) polarization.</description><subject>Computer-Aided Design</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Materials Testing</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Niobium - chemistry</subject><subject>Optical Devices</subject><subject>Oxides - chemistry</subject><subject>Photons</subject><subject>Refractometry - instrumentation</subject><subject>Scattering, Radiation</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAUhYMozji6cz3Mzo2tebVJlzLUBxS60XVI2hsm0pdJi_jv7dBRXN0D9-Mc-BC6JTgmLOUPZR4TEWPKaUrO0JrgjEccS3H-L6_QVQgfGBMuMnGJVhTjhBIm1mhbuPHgpnbXud7oEXbDoR_7zlW7L-chXKMLq5sAN6e7Qe9P-dv-JSrK59f9YxFVTJAxSqyW0goGxhhprDE8ExbSBHiidTp_bMVNbTVYCZiyqqbYQg21kZnlWidsg-6W3sH3nxOEUbUuVNA0uoN-CkqweYfLjMzk_UJWvg_Bg1WDd63234pgdRSiylwRoRYhM749FU-mhfoP_jXAfgDDkVuo</recordid><startdate>20091221</startdate><enddate>20091221</enddate><creator>Hu, H</creator><creator>Ricken, R</creator><creator>Sohler, W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091221</creationdate><title>Lithium niobate photonic wires</title><author>Hu, H ; Ricken, R ; Sohler, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer-Aided Design</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Materials Testing</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Niobium - chemistry</topic><topic>Optical Devices</topic><topic>Oxides - chemistry</topic><topic>Photons</topic><topic>Refractometry - instrumentation</topic><topic>Scattering, Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, H</creatorcontrib><creatorcontrib>Ricken, R</creatorcontrib><creatorcontrib>Sohler, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, H</au><au>Ricken, R</au><au>Sohler, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium niobate photonic wires</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2009-12-21</date><risdate>2009</risdate><volume>17</volume><issue>26</issue><spage>24261</spage><epage>24268</epage><pages>24261-24268</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>LN photonic wires of cross-section dimensions down to 1 x 0.73 microm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 microm wavelength and compared with simulation results. Moreover, effective mode indices and end face reflectivities were numerically evaluated. The waveguide of 1 microm top width is the smallest LN photonic wire reported to date; it has a mode size of approximately 0.4 microm2 (0.5 microm2) only and propagation losses of 9.9 dB/cm (12.9 dB/cm) for qTM (qTE) polarization.</abstract><cop>United States</cop><pmid>20052137</pmid><doi>10.1364/OE.17.024261</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2009-12, Vol.17 (26), p.24261-24268
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_733714891
source EZB Electronic Journals Library
subjects Computer-Aided Design
Equipment Design
Equipment Failure Analysis
Materials Testing
Nanostructures - chemistry
Nanostructures - ultrastructure
Niobium - chemistry
Optical Devices
Oxides - chemistry
Photons
Refractometry - instrumentation
Scattering, Radiation
title Lithium niobate photonic wires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20niobate%20photonic%20wires&rft.jtitle=Optics%20express&rft.au=Hu,%20H&rft.date=2009-12-21&rft.volume=17&rft.issue=26&rft.spage=24261&rft.epage=24268&rft.pages=24261-24268&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.17.024261&rft_dat=%3Cproquest_cross%3E733714891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-5fa88f73ebbb8bfbb497fe65e45aa68f7fc4bdfaef8e023cd20fededb89f4aa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733714891&rft_id=info:pmid/20052137&rfr_iscdi=true