Loading…
Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius
The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the bil...
Saved in:
Published in: | Biochemistry (Easton) 1992-12, Vol.31 (49), p.12493-12499 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the bilayer lipid phosphatidylcholine (PC), analyzed on their miscibility, and fused with membrane vesicles from L. lactis. Freeze-fracture electron microscopy demonstrates that the bipolar lipids in the hybrid membranes adopted a monomolecular organization at high S. acidocaldarius lipid content. Leucine transport activity (i.e., delta mu H(+)-driven and counterflow uptake) increased with the content of S. acidocaldarius lipids and was optimal at a one-to-one (w/w) ratio of PC to S. acidocaldarius lipids. Membrane fluidity decreased with increasing S. acidocaldarius lipid content. These data suggest that transport proteins can be functionally reconstituted into membranes composed of membrane-spanning lipids provided that membrane viscosity is restricted. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00164a028 |