Loading…

Enrichment, Resolution, and Identification of Nickel Porphyrins in Petroleum Asphaltene by Cyclograph Separation and Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

We report here the first high resolution mass spectrometric evidence of nickel porphyrins in petroleum. A petroleum asphaltene sample is fractionated by a silica-gel cyclograph. Nickel content is enriched by ∼3 fold in one of the cyclograph fractions. The fraction is subsequently analyzed by atmosph...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2010-01, Vol.82 (1), p.413-419
Main Authors: Qian, Kuangnan, Edwards, Kathleen E, Mennito, Anthony S, Walters, Clifford C, Kushnerick, J. Douglas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report here the first high resolution mass spectrometric evidence of nickel porphyrins in petroleum. A petroleum asphaltene sample is fractionated by a silica-gel cyclograph. Nickel content is enriched by ∼3 fold in one of the cyclograph fractions. The fraction is subsequently analyzed by atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with an average mass resolving power of over 500 K (M/ΔM fwhm). Similar to vanadyl porphyrins, monocylcoalkano-type (presumed to be deocophylerythro-etioporphyrin DPEP) Ni porphyrins are found to be the most abundant family followed by etio, bicycloalkano-type, and rhodo-monocylcoalkano-type Ni porphyrins. A Z number ranging from −28 to −44 and a carbon number ranging from 26 to 41 were observed. A significant amount of nickel and vanadyl geoporphyrins are in more condensed tetrapyrrolic cores than just chlorophyll-derived DPEP- and etioporphyrins. Ni has a higher etio/DPEP ratio and rhodo-etio/rhodo-DPEP ratio than does VO.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac902367n