Loading…
Protein Resistance of PNIPAAm Brushes: Application to Switchable Protein Adsorption
Protein adsorption, as the primary process occurring when a foreign surface comes into contact with a biosystem, was studied on thin polymer brush films consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(2-vinylpyridine) (P2VP). These films were prepared by the “grafting to” method. The pr...
Saved in:
Published in: | Langmuir 2010-02, Vol.26 (3), p.1786-1795 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein adsorption, as the primary process occurring when a foreign surface comes into contact with a biosystem, was studied on thin polymer brush films consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(2-vinylpyridine) (P2VP). These films were prepared by the “grafting to” method. The protein resistance of stimuli responsive PNIPAAm-brushes toward serum albumin was recorded and compared with protein adsorption on P2VP brushes. To achieve a better understanding of protein resistance, PNIPAAm brushes with different molecular weights were investigated below and above the lower critical solution temperature of 32 °C. To use these findings for the adjustment and switching of protein adsorption, in a first attempt the adsorption on a mixed brush system consisting of PNIPAAm and P2VP chains was studied. This system showed temperature-dependent adsorption behavior due to the presence of PNIPAAm, representing a smart surface with stimuli-responsive changes in the physicochemical surface properties. With this mixed brush, the adsorbed amount of protein could be controlled, depending on composition and the temperature of the surroundings. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la902505q |