Loading…

Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor

Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed d...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2010-03, Vol.151 (3), p.886-895
Main Authors: Fudge, Neva J, Kovacs, Christopher S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033
cites cdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033
container_end_page 895
container_issue 3
container_start_page 886
container_title Endocrinology (Philadelphia)
container_volume 151
creator Fudge, Neva J
Kovacs, Christopher S
description Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning. Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.
doi_str_mv 10.1210/en.2009-1010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733811738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2009-1010</oup_id><sourcerecordid>733811738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</originalsourceid><addsrcrecordid>eNp1kc9vFCEUgInR2LV682xIjOmlU2Fghtljs9a6SRtNtV4JwzwqlYERmMT1r5d1V9sYvTxC3sf7wYfQc0pOaE3Ja_AnNSHLihJKHqAFXfKmElSQh2hBCGWVqGtxgJ6kdFuunHP2GB2UBw3lXbtA3z9EuPHK6w2-nqoruJmdypDw2peYrVcOr5TTdh7xaZ9CnLINHis_4I9fwUEu-UvrISpnf6hfubUfYIISfHYbHAzOXwB_tlmN1uM3-Ao0TDnEp-iRUS7Bs_15iK7fnn1avasu3p-vV6cXlW7qLleat2ZQqtO96EjTtF3d9EwYw0BToCDamna9Yoy0GjgxdAlGtEYMnDCtFWHsEB3t6k4xfJvLTnK0SYNzykOYkxSMdZQK1hXy5V_kbZhj-YEkGS0NyJISXqjjHaVjSCmCkVO0o4obSYncCpHg5VaI3Aop-It90bkfYfgD_zZQgFd7QCWtnInFhU13XM15I-p7e4R5-l_Lat-S7cgiIehY7EwRUrrb5p-D_gTzqbCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130609104</pqid></control><display><type>article</type><title>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</title><source>Oxford Journals Online</source><creator>Fudge, Neva J ; Kovacs, Christopher S</creator><creatorcontrib>Fudge, Neva J ; Kovacs, Christopher S</creatorcontrib><description>Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning. Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2009-1010</identifier><identifier>PMID: 20051486</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Absorption ; Adaptation ; Adaptation, Physiological ; Animals ; Biological and medical sciences ; Bone Density ; Bone mineral content ; Bone turnover ; Breastfeeding &amp; lactation ; Ca2+-transporting ATPase ; Calbindin-D9K ; Calciferol ; Calcification, Physiologic ; Calcitriol - metabolism ; Calcium ; Calcium - metabolism ; Calcium absorption ; Calcium ions ; Calcium isotopes ; Duodenum - metabolism ; Female ; Fetuses ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Genomic analysis ; Homeostasis ; Hyperparathyroidism ; Hyperparathyroidism, Secondary - metabolism ; Intestinal Absorption ; Intestine ; Lactation ; Lactation - metabolism ; Mice ; Milk ; Mineralization ; Oligonucleotide Array Sequence Analysis ; Osteoid ; Osteomalacia ; Pregnancy ; Pregnancy, Animal - metabolism ; Receptors ; Receptors, Calcitriol - metabolism ; Rickets ; Rickets - metabolism ; Rickets - pathology ; Skeleton ; Tibia - pathology ; Up-Regulation ; Vertebrates: endocrinology ; Vitamin D ; Vitamin D receptors ; Weaning</subject><ispartof>Endocrinology (Philadelphia), 2010-03, Vol.151 (3), p.886-895</ispartof><rights>Copyright © 2010 by the Endocrine Society 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 by the Endocrine Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</citedby><cites>FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22445723$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20051486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fudge, Neva J</creatorcontrib><creatorcontrib>Kovacs, Christopher S</creatorcontrib><title>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning. Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.</description><subject>Absorption</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Density</subject><subject>Bone mineral content</subject><subject>Bone turnover</subject><subject>Breastfeeding &amp; lactation</subject><subject>Ca2+-transporting ATPase</subject><subject>Calbindin-D9K</subject><subject>Calciferol</subject><subject>Calcification, Physiologic</subject><subject>Calcitriol - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium absorption</subject><subject>Calcium ions</subject><subject>Calcium isotopes</subject><subject>Duodenum - metabolism</subject><subject>Female</subject><subject>Fetuses</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Genomic analysis</subject><subject>Homeostasis</subject><subject>Hyperparathyroidism</subject><subject>Hyperparathyroidism, Secondary - metabolism</subject><subject>Intestinal Absorption</subject><subject>Intestine</subject><subject>Lactation</subject><subject>Lactation - metabolism</subject><subject>Mice</subject><subject>Milk</subject><subject>Mineralization</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Osteoid</subject><subject>Osteomalacia</subject><subject>Pregnancy</subject><subject>Pregnancy, Animal - metabolism</subject><subject>Receptors</subject><subject>Receptors, Calcitriol - metabolism</subject><subject>Rickets</subject><subject>Rickets - metabolism</subject><subject>Rickets - pathology</subject><subject>Skeleton</subject><subject>Tibia - pathology</subject><subject>Up-Regulation</subject><subject>Vertebrates: endocrinology</subject><subject>Vitamin D</subject><subject>Vitamin D receptors</subject><subject>Weaning</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc9vFCEUgInR2LV682xIjOmlU2Fghtljs9a6SRtNtV4JwzwqlYERmMT1r5d1V9sYvTxC3sf7wYfQc0pOaE3Ja_AnNSHLihJKHqAFXfKmElSQh2hBCGWVqGtxgJ6kdFuunHP2GB2UBw3lXbtA3z9EuPHK6w2-nqoruJmdypDw2peYrVcOr5TTdh7xaZ9CnLINHis_4I9fwUEu-UvrISpnf6hfubUfYIISfHYbHAzOXwB_tlmN1uM3-Ao0TDnEp-iRUS7Bs_15iK7fnn1avasu3p-vV6cXlW7qLleat2ZQqtO96EjTtF3d9EwYw0BToCDamna9Yoy0GjgxdAlGtEYMnDCtFWHsEB3t6k4xfJvLTnK0SYNzykOYkxSMdZQK1hXy5V_kbZhj-YEkGS0NyJISXqjjHaVjSCmCkVO0o4obSYncCpHg5VaI3Aop-It90bkfYfgD_zZQgFd7QCWtnInFhU13XM15I-p7e4R5-l_Lat-S7cgiIehY7EwRUrrb5p-D_gTzqbCc</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Fudge, Neva J</creator><creator>Kovacs, Christopher S</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</title><author>Fudge, Neva J ; Kovacs, Christopher S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Density</topic><topic>Bone mineral content</topic><topic>Bone turnover</topic><topic>Breastfeeding &amp; lactation</topic><topic>Ca2+-transporting ATPase</topic><topic>Calbindin-D9K</topic><topic>Calciferol</topic><topic>Calcification, Physiologic</topic><topic>Calcitriol - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium absorption</topic><topic>Calcium ions</topic><topic>Calcium isotopes</topic><topic>Duodenum - metabolism</topic><topic>Female</topic><topic>Fetuses</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Genomic analysis</topic><topic>Homeostasis</topic><topic>Hyperparathyroidism</topic><topic>Hyperparathyroidism, Secondary - metabolism</topic><topic>Intestinal Absorption</topic><topic>Intestine</topic><topic>Lactation</topic><topic>Lactation - metabolism</topic><topic>Mice</topic><topic>Milk</topic><topic>Mineralization</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Osteoid</topic><topic>Osteomalacia</topic><topic>Pregnancy</topic><topic>Pregnancy, Animal - metabolism</topic><topic>Receptors</topic><topic>Receptors, Calcitriol - metabolism</topic><topic>Rickets</topic><topic>Rickets - metabolism</topic><topic>Rickets - pathology</topic><topic>Skeleton</topic><topic>Tibia - pathology</topic><topic>Up-Regulation</topic><topic>Vertebrates: endocrinology</topic><topic>Vitamin D</topic><topic>Vitamin D receptors</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fudge, Neva J</creatorcontrib><creatorcontrib>Kovacs, Christopher S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fudge, Neva J</au><au>Kovacs, Christopher S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>151</volume><issue>3</issue><spage>886</spage><epage>895</epage><pages>886-895</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning. Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>20051486</pmid><doi>10.1210/en.2009-1010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2010-03, Vol.151 (3), p.886-895
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_miscellaneous_733811738
source Oxford Journals Online
subjects Absorption
Adaptation
Adaptation, Physiological
Animals
Biological and medical sciences
Bone Density
Bone mineral content
Bone turnover
Breastfeeding & lactation
Ca2+-transporting ATPase
Calbindin-D9K
Calciferol
Calcification, Physiologic
Calcitriol - metabolism
Calcium
Calcium - metabolism
Calcium absorption
Calcium ions
Calcium isotopes
Duodenum - metabolism
Female
Fetuses
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Genomic analysis
Homeostasis
Hyperparathyroidism
Hyperparathyroidism, Secondary - metabolism
Intestinal Absorption
Intestine
Lactation
Lactation - metabolism
Mice
Milk
Mineralization
Oligonucleotide Array Sequence Analysis
Osteoid
Osteomalacia
Pregnancy
Pregnancy, Animal - metabolism
Receptors
Receptors, Calcitriol - metabolism
Rickets
Rickets - metabolism
Rickets - pathology
Skeleton
Tibia - pathology
Up-Regulation
Vertebrates: endocrinology
Vitamin D
Vitamin D receptors
Weaning
title Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pregnancy%20Up-Regulates%20Intestinal%20Calcium%20Absorption%20and%20Skeletal%20Mineralization%20Independently%20of%20the%20Vitamin%20D%20Receptor&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Fudge,%20Neva%20J&rft.date=2010-03-01&rft.volume=151&rft.issue=3&rft.spage=886&rft.epage=895&rft.pages=886-895&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2009-1010&rft_dat=%3Cproquest_cross%3E733811738%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130609104&rft_id=info:pmid/20051486&rft_oup_id=10.1210/en.2009-1010&rfr_iscdi=true