Loading…
Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor
Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed d...
Saved in:
Published in: | Endocrinology (Philadelphia) 2010-03, Vol.151 (3), p.886-895 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033 |
container_end_page | 895 |
container_issue | 3 |
container_start_page | 886 |
container_title | Endocrinology (Philadelphia) |
container_volume | 151 |
creator | Fudge, Neva J Kovacs, Christopher S |
description | Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning.
Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant. |
doi_str_mv | 10.1210/en.2009-1010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733811738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2009-1010</oup_id><sourcerecordid>733811738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</originalsourceid><addsrcrecordid>eNp1kc9vFCEUgInR2LV682xIjOmlU2Fghtljs9a6SRtNtV4JwzwqlYERmMT1r5d1V9sYvTxC3sf7wYfQc0pOaE3Ja_AnNSHLihJKHqAFXfKmElSQh2hBCGWVqGtxgJ6kdFuunHP2GB2UBw3lXbtA3z9EuPHK6w2-nqoruJmdypDw2peYrVcOr5TTdh7xaZ9CnLINHis_4I9fwUEu-UvrISpnf6hfubUfYIISfHYbHAzOXwB_tlmN1uM3-Ao0TDnEp-iRUS7Bs_15iK7fnn1avasu3p-vV6cXlW7qLleat2ZQqtO96EjTtF3d9EwYw0BToCDamna9Yoy0GjgxdAlGtEYMnDCtFWHsEB3t6k4xfJvLTnK0SYNzykOYkxSMdZQK1hXy5V_kbZhj-YEkGS0NyJISXqjjHaVjSCmCkVO0o4obSYncCpHg5VaI3Aop-It90bkfYfgD_zZQgFd7QCWtnInFhU13XM15I-p7e4R5-l_Lat-S7cgiIehY7EwRUrrb5p-D_gTzqbCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130609104</pqid></control><display><type>article</type><title>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</title><source>Oxford Journals Online</source><creator>Fudge, Neva J ; Kovacs, Christopher S</creator><creatorcontrib>Fudge, Neva J ; Kovacs, Christopher S</creatorcontrib><description>Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning.
Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2009-1010</identifier><identifier>PMID: 20051486</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Absorption ; Adaptation ; Adaptation, Physiological ; Animals ; Biological and medical sciences ; Bone Density ; Bone mineral content ; Bone turnover ; Breastfeeding & lactation ; Ca2+-transporting ATPase ; Calbindin-D9K ; Calciferol ; Calcification, Physiologic ; Calcitriol - metabolism ; Calcium ; Calcium - metabolism ; Calcium absorption ; Calcium ions ; Calcium isotopes ; Duodenum - metabolism ; Female ; Fetuses ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Genomic analysis ; Homeostasis ; Hyperparathyroidism ; Hyperparathyroidism, Secondary - metabolism ; Intestinal Absorption ; Intestine ; Lactation ; Lactation - metabolism ; Mice ; Milk ; Mineralization ; Oligonucleotide Array Sequence Analysis ; Osteoid ; Osteomalacia ; Pregnancy ; Pregnancy, Animal - metabolism ; Receptors ; Receptors, Calcitriol - metabolism ; Rickets ; Rickets - metabolism ; Rickets - pathology ; Skeleton ; Tibia - pathology ; Up-Regulation ; Vertebrates: endocrinology ; Vitamin D ; Vitamin D receptors ; Weaning</subject><ispartof>Endocrinology (Philadelphia), 2010-03, Vol.151 (3), p.886-895</ispartof><rights>Copyright © 2010 by the Endocrine Society 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 by the Endocrine Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</citedby><cites>FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22445723$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20051486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fudge, Neva J</creatorcontrib><creatorcontrib>Kovacs, Christopher S</creatorcontrib><title>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning.
Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.</description><subject>Absorption</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Density</subject><subject>Bone mineral content</subject><subject>Bone turnover</subject><subject>Breastfeeding & lactation</subject><subject>Ca2+-transporting ATPase</subject><subject>Calbindin-D9K</subject><subject>Calciferol</subject><subject>Calcification, Physiologic</subject><subject>Calcitriol - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium absorption</subject><subject>Calcium ions</subject><subject>Calcium isotopes</subject><subject>Duodenum - metabolism</subject><subject>Female</subject><subject>Fetuses</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Genomic analysis</subject><subject>Homeostasis</subject><subject>Hyperparathyroidism</subject><subject>Hyperparathyroidism, Secondary - metabolism</subject><subject>Intestinal Absorption</subject><subject>Intestine</subject><subject>Lactation</subject><subject>Lactation - metabolism</subject><subject>Mice</subject><subject>Milk</subject><subject>Mineralization</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Osteoid</subject><subject>Osteomalacia</subject><subject>Pregnancy</subject><subject>Pregnancy, Animal - metabolism</subject><subject>Receptors</subject><subject>Receptors, Calcitriol - metabolism</subject><subject>Rickets</subject><subject>Rickets - metabolism</subject><subject>Rickets - pathology</subject><subject>Skeleton</subject><subject>Tibia - pathology</subject><subject>Up-Regulation</subject><subject>Vertebrates: endocrinology</subject><subject>Vitamin D</subject><subject>Vitamin D receptors</subject><subject>Weaning</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc9vFCEUgInR2LV682xIjOmlU2Fghtljs9a6SRtNtV4JwzwqlYERmMT1r5d1V9sYvTxC3sf7wYfQc0pOaE3Ja_AnNSHLihJKHqAFXfKmElSQh2hBCGWVqGtxgJ6kdFuunHP2GB2UBw3lXbtA3z9EuPHK6w2-nqoruJmdypDw2peYrVcOr5TTdh7xaZ9CnLINHis_4I9fwUEu-UvrISpnf6hfubUfYIISfHYbHAzOXwB_tlmN1uM3-Ao0TDnEp-iRUS7Bs_15iK7fnn1avasu3p-vV6cXlW7qLleat2ZQqtO96EjTtF3d9EwYw0BToCDamna9Yoy0GjgxdAlGtEYMnDCtFWHsEB3t6k4xfJvLTnK0SYNzykOYkxSMdZQK1hXy5V_kbZhj-YEkGS0NyJISXqjjHaVjSCmCkVO0o4obSYncCpHg5VaI3Aop-It90bkfYfgD_zZQgFd7QCWtnInFhU13XM15I-p7e4R5-l_Lat-S7cgiIehY7EwRUrrb5p-D_gTzqbCc</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Fudge, Neva J</creator><creator>Kovacs, Christopher S</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</title><author>Fudge, Neva J ; Kovacs, Christopher S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Density</topic><topic>Bone mineral content</topic><topic>Bone turnover</topic><topic>Breastfeeding & lactation</topic><topic>Ca2+-transporting ATPase</topic><topic>Calbindin-D9K</topic><topic>Calciferol</topic><topic>Calcification, Physiologic</topic><topic>Calcitriol - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium absorption</topic><topic>Calcium ions</topic><topic>Calcium isotopes</topic><topic>Duodenum - metabolism</topic><topic>Female</topic><topic>Fetuses</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Genomic analysis</topic><topic>Homeostasis</topic><topic>Hyperparathyroidism</topic><topic>Hyperparathyroidism, Secondary - metabolism</topic><topic>Intestinal Absorption</topic><topic>Intestine</topic><topic>Lactation</topic><topic>Lactation - metabolism</topic><topic>Mice</topic><topic>Milk</topic><topic>Mineralization</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Osteoid</topic><topic>Osteomalacia</topic><topic>Pregnancy</topic><topic>Pregnancy, Animal - metabolism</topic><topic>Receptors</topic><topic>Receptors, Calcitriol - metabolism</topic><topic>Rickets</topic><topic>Rickets - metabolism</topic><topic>Rickets - pathology</topic><topic>Skeleton</topic><topic>Tibia - pathology</topic><topic>Up-Regulation</topic><topic>Vertebrates: endocrinology</topic><topic>Vitamin D</topic><topic>Vitamin D receptors</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fudge, Neva J</creatorcontrib><creatorcontrib>Kovacs, Christopher S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fudge, Neva J</au><au>Kovacs, Christopher S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>151</volume><issue>3</issue><spage>886</spage><epage>895</epage><pages>886-895</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Without the vitamin D receptor (VDR), adult mammals develop reduced intestinal calcium absorption, rickets, and osteomalacia. Intestinal calcium absorption normally increases during pregnancy so that the mother can supply sufficient calcium to her fetuses. The maternal skeleton is rapidly resorbed during lactation to provide calcium needed for milk; that lost bone mineral content (BMC) is completely restored after weaning. We studied Vdr null mice to determine whether these adaptations during pregnancy and lactation require the VDR. Vdr nulls were severely rachitic at 10 wk of age on a normal diet. Pregnancy induced a 158% increase in Vdr null BMC to equal the pregnant wild-type (WT) value. Lactation caused BMC losses that were equal in Vdr nulls and WT. Vdr nulls recovered after weaning to a BMC 50% higher than before pregnancy and equal to WT. Additional analyses showed that during pregnancy, duodenal 45Ca absorption increased in Vdr nulls, secondary hyperparathyroidism lessened, bone turnover markers decreased, and osteoid became fully mineralized. A genome-wide microarray analysis of duodenal RNA found marked reduction of Trpv6 in Vdr nulls at baseline but a 13.5-fold increase during pregnancy. Calbindin D-9K (S100g) and Ca2+-ATPase (Pmca1) were not altered by pregnancy. Several other solute transporters increased during pregnancy in Vdr nulls. In summary, Vdr nulls adapt to pregnancy by up-regulating duodenal Trpv6 and intestinal 45Ca absorption, thereby enabling rapid normalization of BMC during pregnancy. These mice lactate normally and fully restore BMC after weaning. Therefore, VDR is not required for the skeletal adaptations during pregnancy, lactation, and after weaning.
Vdr null mice gain substantial bone mass and up-regulation intestinal calcium absorption simply by becoming pregnant.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>20051486</pmid><doi>10.1210/en.2009-1010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2010-03, Vol.151 (3), p.886-895 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_733811738 |
source | Oxford Journals Online |
subjects | Absorption Adaptation Adaptation, Physiological Animals Biological and medical sciences Bone Density Bone mineral content Bone turnover Breastfeeding & lactation Ca2+-transporting ATPase Calbindin-D9K Calciferol Calcification, Physiologic Calcitriol - metabolism Calcium Calcium - metabolism Calcium absorption Calcium ions Calcium isotopes Duodenum - metabolism Female Fetuses Fundamental and applied biological sciences. Psychology Gene Expression Profiling Genomic analysis Homeostasis Hyperparathyroidism Hyperparathyroidism, Secondary - metabolism Intestinal Absorption Intestine Lactation Lactation - metabolism Mice Milk Mineralization Oligonucleotide Array Sequence Analysis Osteoid Osteomalacia Pregnancy Pregnancy, Animal - metabolism Receptors Receptors, Calcitriol - metabolism Rickets Rickets - metabolism Rickets - pathology Skeleton Tibia - pathology Up-Regulation Vertebrates: endocrinology Vitamin D Vitamin D receptors Weaning |
title | Pregnancy Up-Regulates Intestinal Calcium Absorption and Skeletal Mineralization Independently of the Vitamin D Receptor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pregnancy%20Up-Regulates%20Intestinal%20Calcium%20Absorption%20and%20Skeletal%20Mineralization%20Independently%20of%20the%20Vitamin%20D%20Receptor&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Fudge,%20Neva%20J&rft.date=2010-03-01&rft.volume=151&rft.issue=3&rft.spage=886&rft.epage=895&rft.pages=886-895&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2009-1010&rft_dat=%3Cproquest_cross%3E733811738%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-c46fdaa8cb780556825b37ff3ec1e1e76218ba3306ce40f19ef76f7d403cca033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130609104&rft_id=info:pmid/20051486&rft_oup_id=10.1210/en.2009-1010&rfr_iscdi=true |