Loading…
Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation
We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion...
Saved in:
Published in: | Journal of Biomedical Optics 2009-11, Vol.14 (6), p.064021-0640210 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient. |
---|---|
ISSN: | 1083-3668 1560-2281 |
DOI: | 10.1117/1.3268444 |