Loading…

Three-Component Synthesis of Perfluoroalkyl- or Perfluoroaryl-Substituted 4-Hydroxypyridine Derivatives and Their Palladium-Catalyzed Coupling Reactions

A three-component reaction with lithiated alkoxyallenes, nitriles, and perfluorinated carboxylic acids as precursors led to a series of perfluoroalkyl- or perfluoroaryl-substituted 4-hydroxypyridine derivatives. These compounds were converted into 4-pyridyl nonaflates which can be employed as versat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2010-02, Vol.75 (3), p.726-732
Main Authors: Lechel, Tilman, Dash, Jyotirmayee, Hommes, Paul, Lentz, Dieter, Reissig, Hans-Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-component reaction with lithiated alkoxyallenes, nitriles, and perfluorinated carboxylic acids as precursors led to a series of perfluoroalkyl- or perfluoroaryl-substituted 4-hydroxypyridine derivatives. These compounds were converted into 4-pyridyl nonaflates which can be employed as versatile building blocks for the synthesis of π-conjugated compounds with use of palladium-catalyzed couplings. Suzuki reactions at C-4 and C-3 of the pyridine ring proceeded with moderate to high yields. In addition, Suzuki−Miyaura, Stille, or Buchwald−Hartwig coupling reactions have also been studied and afforded the corresponding highly substituted pyridine derivatives. Starting from an arylated propargylic ether the three-component reaction led to a pentasubstituted 4-hydroxypyridine derivative that could also be employed in palladium-catalyzed processes at C-4 and at C-3 of the pyridine core. With this simple approach the sterically highly crowded 3,4,5-triphenyl-substituted pyridine derivative 37a could be prepared and studied by an X-ray analysis. With acetonitrile as precursor a different reaction pathway was found when this component was used in excess resulting in a pyridine derivative with a new substitution pattern. In summary, the methods described here allow a flexible and fairly efficient entry to a variety of highly substituted pyridine derivatives bearing perfluorinated alkyl or aryl groups.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo9022183