Loading…

Denoising of single-trial matrix representations using 2D nonlinear diffusion filtering

In this paper we present a novel application of denoising by means of nonlinear diffusion filters (NDFs). NDFs have been successfully applied for image processing and computer vision areas, particularly in image denoising, smoothing, segmentation, and restoration. We apply two types of NDFs for the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2010-01, Vol.185 (2), p.284-292
Main Authors: Mustaffa, I., Trenado, C., Schwerdtfeger, K., Strauss, D.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83
cites cdi_FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83
container_end_page 292
container_issue 2
container_start_page 284
container_title Journal of neuroscience methods
container_volume 185
creator Mustaffa, I.
Trenado, C.
Schwerdtfeger, K.
Strauss, D.J.
description In this paper we present a novel application of denoising by means of nonlinear diffusion filters (NDFs). NDFs have been successfully applied for image processing and computer vision areas, particularly in image denoising, smoothing, segmentation, and restoration. We apply two types of NDFs for the denoising of evoked responses in single-trials in a matrix form, the nonlinear isotropic and the anisotropic diffusion filters. We show that by means of NDFs we are able to denoise the evoked potentials resulting in a better extraction of physiologically relevant morphological features over the ongoing experiment. This technique offers the advantage of translation-invariance in comparison to other well-known methods, e.g., wavelet denoising based on maximally decimated filter banks, due to an adaptive diffusion feature. We compare the proposed technique with a wavelet denoising scheme that had been introduced before for evoked responses. It is concluded that NDFs represent a promising and useful approach in the denoising of event related potentials. Novel NDF applications of single-trials of auditory brain responses (ABRs) and the transcranial magnetic stimulation (TMS) evoked electroencephalographic responses denoising are presented in this paper.
doi_str_mv 10.1016/j.jneumeth.2009.09.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733854000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027009005081</els_id><sourcerecordid>733854000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83</originalsourceid><addsrcrecordid>eNqFkF1r2zAUhsXoWNK0fyH4ar1yqo_Yku46kq0tBHrTst0JWT7aFGwpk-zR_fvJTcruWnjhBfEcHc6D0JLgFcGkvt6v9h7GHoZfK4qxXE0h_AOaE8FpWXPx4wzNM1iVmHI8Q-cp7THGa4nrT2hGpCCSVnKOvm_BB5ec_1kEW0zdQTlEp7ui17mfiwiHCAn8oAcXfCrGF5huCx985zzoWLTO2vwcfGFdN0DMwAX6aHWX4PLUC_T07evj5q7cPdzeb77sSsOkGErCtaFQ8UZSYLwVpqESE5aj6waLpsLAqK0IlW1rWWO1rqhu6nVtKTNGC7ZAV8d_DzH8HiENqnfJQNdpD2FMijMmqnW-PJOf3yQpoazCgmSwPoImhpQiWHWIrtfxryJYTfLVXr3KV5N8NYXwPLg8bRibHtr_YyfbGbg5ApCN_HEQVTIOvIHWRTCDaoN7b8c_bWaa1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21235081</pqid></control><display><type>article</type><title>Denoising of single-trial matrix representations using 2D nonlinear diffusion filtering</title><source>Elsevier</source><creator>Mustaffa, I. ; Trenado, C. ; Schwerdtfeger, K. ; Strauss, D.J.</creator><creatorcontrib>Mustaffa, I. ; Trenado, C. ; Schwerdtfeger, K. ; Strauss, D.J.</creatorcontrib><description>In this paper we present a novel application of denoising by means of nonlinear diffusion filters (NDFs). NDFs have been successfully applied for image processing and computer vision areas, particularly in image denoising, smoothing, segmentation, and restoration. We apply two types of NDFs for the denoising of evoked responses in single-trials in a matrix form, the nonlinear isotropic and the anisotropic diffusion filters. We show that by means of NDFs we are able to denoise the evoked potentials resulting in a better extraction of physiologically relevant morphological features over the ongoing experiment. This technique offers the advantage of translation-invariance in comparison to other well-known methods, e.g., wavelet denoising based on maximally decimated filter banks, due to an adaptive diffusion feature. We compare the proposed technique with a wavelet denoising scheme that had been introduced before for evoked responses. It is concluded that NDFs represent a promising and useful approach in the denoising of event related potentials. Novel NDF applications of single-trials of auditory brain responses (ABRs) and the transcranial magnetic stimulation (TMS) evoked electroencephalographic responses denoising are presented in this paper.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2009.09.017</identifier><identifier>PMID: 19819259</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Brain - physiology ; Computer Simulation ; Denoising ; Diffusion ; Electroencephalography ; Evoked Potentials - physiology ; Evoked responses ; Humans ; Models, Neurological ; Nonlinear diffusion filtering ; Nonlinear Dynamics ; Pattern Recognition, Automated ; Signal Processing, Computer-Assisted ; Single-trials ; Transcranial Magnetic Stimulation</subject><ispartof>Journal of neuroscience methods, 2010-01, Vol.185 (2), p.284-292</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83</citedby><cites>FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19819259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mustaffa, I.</creatorcontrib><creatorcontrib>Trenado, C.</creatorcontrib><creatorcontrib>Schwerdtfeger, K.</creatorcontrib><creatorcontrib>Strauss, D.J.</creatorcontrib><title>Denoising of single-trial matrix representations using 2D nonlinear diffusion filtering</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>In this paper we present a novel application of denoising by means of nonlinear diffusion filters (NDFs). NDFs have been successfully applied for image processing and computer vision areas, particularly in image denoising, smoothing, segmentation, and restoration. We apply two types of NDFs for the denoising of evoked responses in single-trials in a matrix form, the nonlinear isotropic and the anisotropic diffusion filters. We show that by means of NDFs we are able to denoise the evoked potentials resulting in a better extraction of physiologically relevant morphological features over the ongoing experiment. This technique offers the advantage of translation-invariance in comparison to other well-known methods, e.g., wavelet denoising based on maximally decimated filter banks, due to an adaptive diffusion feature. We compare the proposed technique with a wavelet denoising scheme that had been introduced before for evoked responses. It is concluded that NDFs represent a promising and useful approach in the denoising of event related potentials. Novel NDF applications of single-trials of auditory brain responses (ABRs) and the transcranial magnetic stimulation (TMS) evoked electroencephalographic responses denoising are presented in this paper.</description><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Computer Simulation</subject><subject>Denoising</subject><subject>Diffusion</subject><subject>Electroencephalography</subject><subject>Evoked Potentials - physiology</subject><subject>Evoked responses</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nonlinear diffusion filtering</subject><subject>Nonlinear Dynamics</subject><subject>Pattern Recognition, Automated</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Single-trials</subject><subject>Transcranial Magnetic Stimulation</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkF1r2zAUhsXoWNK0fyH4ar1yqo_Yku46kq0tBHrTst0JWT7aFGwpk-zR_fvJTcruWnjhBfEcHc6D0JLgFcGkvt6v9h7GHoZfK4qxXE0h_AOaE8FpWXPx4wzNM1iVmHI8Q-cp7THGa4nrT2hGpCCSVnKOvm_BB5ec_1kEW0zdQTlEp7ui17mfiwiHCAn8oAcXfCrGF5huCx985zzoWLTO2vwcfGFdN0DMwAX6aHWX4PLUC_T07evj5q7cPdzeb77sSsOkGErCtaFQ8UZSYLwVpqESE5aj6waLpsLAqK0IlW1rWWO1rqhu6nVtKTNGC7ZAV8d_DzH8HiENqnfJQNdpD2FMijMmqnW-PJOf3yQpoazCgmSwPoImhpQiWHWIrtfxryJYTfLVXr3KV5N8NYXwPLg8bRibHtr_YyfbGbg5ApCN_HEQVTIOvIHWRTCDaoN7b8c_bWaa1g</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Mustaffa, I.</creator><creator>Trenado, C.</creator><creator>Schwerdtfeger, K.</creator><creator>Strauss, D.J.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20100115</creationdate><title>Denoising of single-trial matrix representations using 2D nonlinear diffusion filtering</title><author>Mustaffa, I. ; Trenado, C. ; Schwerdtfeger, K. ; Strauss, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Computer Simulation</topic><topic>Denoising</topic><topic>Diffusion</topic><topic>Electroencephalography</topic><topic>Evoked Potentials - physiology</topic><topic>Evoked responses</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nonlinear diffusion filtering</topic><topic>Nonlinear Dynamics</topic><topic>Pattern Recognition, Automated</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Single-trials</topic><topic>Transcranial Magnetic Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mustaffa, I.</creatorcontrib><creatorcontrib>Trenado, C.</creatorcontrib><creatorcontrib>Schwerdtfeger, K.</creatorcontrib><creatorcontrib>Strauss, D.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mustaffa, I.</au><au>Trenado, C.</au><au>Schwerdtfeger, K.</au><au>Strauss, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising of single-trial matrix representations using 2D nonlinear diffusion filtering</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2010-01-15</date><risdate>2010</risdate><volume>185</volume><issue>2</issue><spage>284</spage><epage>292</epage><pages>284-292</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>In this paper we present a novel application of denoising by means of nonlinear diffusion filters (NDFs). NDFs have been successfully applied for image processing and computer vision areas, particularly in image denoising, smoothing, segmentation, and restoration. We apply two types of NDFs for the denoising of evoked responses in single-trials in a matrix form, the nonlinear isotropic and the anisotropic diffusion filters. We show that by means of NDFs we are able to denoise the evoked potentials resulting in a better extraction of physiologically relevant morphological features over the ongoing experiment. This technique offers the advantage of translation-invariance in comparison to other well-known methods, e.g., wavelet denoising based on maximally decimated filter banks, due to an adaptive diffusion feature. We compare the proposed technique with a wavelet denoising scheme that had been introduced before for evoked responses. It is concluded that NDFs represent a promising and useful approach in the denoising of event related potentials. Novel NDF applications of single-trials of auditory brain responses (ABRs) and the transcranial magnetic stimulation (TMS) evoked electroencephalographic responses denoising are presented in this paper.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19819259</pmid><doi>10.1016/j.jneumeth.2009.09.017</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2010-01, Vol.185 (2), p.284-292
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_733854000
source Elsevier
subjects Algorithms
Brain - physiology
Computer Simulation
Denoising
Diffusion
Electroencephalography
Evoked Potentials - physiology
Evoked responses
Humans
Models, Neurological
Nonlinear diffusion filtering
Nonlinear Dynamics
Pattern Recognition, Automated
Signal Processing, Computer-Assisted
Single-trials
Transcranial Magnetic Stimulation
title Denoising of single-trial matrix representations using 2D nonlinear diffusion filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20of%20single-trial%20matrix%20representations%20using%202D%20nonlinear%20diffusion%20filtering&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Mustaffa,%20I.&rft.date=2010-01-15&rft.volume=185&rft.issue=2&rft.spage=284&rft.epage=292&rft.pages=284-292&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2009.09.017&rft_dat=%3Cproquest_cross%3E733854000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-17ac2e57b92e37d8cb29013013a6b08b50e32f5129ddf3bfaa52ab646f23cca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21235081&rft_id=info:pmid/19819259&rfr_iscdi=true