Loading…
Whole record surveillance is superior to chief complaint surveillance for predicting influenza
Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of...
Saved in:
Published in: | AMIA ... Annual Symposium proceedings 2008-11, p.1173-1173 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1173 |
container_issue | |
container_start_page | 1173 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | |
creator | Welsh, Gail Wahner-Roedler, Dietlind Froehling, David Arthur Trusko, Brett Elkin, Peter |
description | Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza. |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733873632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733873632</sourcerecordid><originalsourceid>FETCH-LOGICAL-p125t-309825256f83ad429fef438e11b780235f8379d92da7c7d3d30bcfbfff4984c33</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhIMg7rr6FyQ3T4U2b9IkR1n8ggUvijdLmrxxI21Tk1bQX2_F9eBpmOFhGOaIrCshdMFLWa_Iac5vZcmlUPUJWVVKa6WFXJOX533skCa0MTma5_SBoevMYJGGvPgRU4iJTpHafUBPbezHzoRh-s_6hRkTumCnMLzSMPhuxuHLnJFjb7qM5wfdkKeb68ftXbF7uL3fXu2KsWJiKqDUigkmaq_AOM60R89BYVW1UpUMxJJL7TRzRlrpwEHZWt9677lW3AJsyOVv75ji-4x5avqQLf6swzjnRgIoCTWwhbw4kHPbo2vGFHqTPpu_S-Ab6qVeKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733873632</pqid></control><display><type>article</type><title>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</title><source>PubMed Central (Open Access)</source><creator>Welsh, Gail ; Wahner-Roedler, Dietlind ; Froehling, David Arthur ; Trusko, Brett ; Elkin, Peter</creator><creatorcontrib>Welsh, Gail ; Wahner-Roedler, Dietlind ; Froehling, David Arthur ; Trusko, Brett ; Elkin, Peter</creatorcontrib><description>Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 18998957</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Decision Support Systems, Clinical ; Diagnosis, Computer-Assisted - methods ; Disease Notification ; Humans ; Influenza, Human - diagnosis ; Medical Records Systems, Computerized ; Natural Language Processing ; Population Surveillance - methods</subject><ispartof>AMIA ... Annual Symposium proceedings, 2008-11, p.1173-1173</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18998957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welsh, Gail</creatorcontrib><creatorcontrib>Wahner-Roedler, Dietlind</creatorcontrib><creatorcontrib>Froehling, David Arthur</creatorcontrib><creatorcontrib>Trusko, Brett</creatorcontrib><creatorcontrib>Elkin, Peter</creatorcontrib><title>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.</description><subject>Artificial Intelligence</subject><subject>Decision Support Systems, Clinical</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Disease Notification</subject><subject>Humans</subject><subject>Influenza, Human - diagnosis</subject><subject>Medical Records Systems, Computerized</subject><subject>Natural Language Processing</subject><subject>Population Surveillance - methods</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAYhIMg7rr6FyQ3T4U2b9IkR1n8ggUvijdLmrxxI21Tk1bQX2_F9eBpmOFhGOaIrCshdMFLWa_Iac5vZcmlUPUJWVVKa6WFXJOX533skCa0MTma5_SBoevMYJGGvPgRU4iJTpHafUBPbezHzoRh-s_6hRkTumCnMLzSMPhuxuHLnJFjb7qM5wfdkKeb68ftXbF7uL3fXu2KsWJiKqDUigkmaq_AOM60R89BYVW1UpUMxJJL7TRzRlrpwEHZWt9677lW3AJsyOVv75ji-4x5avqQLf6swzjnRgIoCTWwhbw4kHPbo2vGFHqTPpu_S-Ab6qVeKA</recordid><startdate>20081106</startdate><enddate>20081106</enddate><creator>Welsh, Gail</creator><creator>Wahner-Roedler, Dietlind</creator><creator>Froehling, David Arthur</creator><creator>Trusko, Brett</creator><creator>Elkin, Peter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20081106</creationdate><title>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</title><author>Welsh, Gail ; Wahner-Roedler, Dietlind ; Froehling, David Arthur ; Trusko, Brett ; Elkin, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p125t-309825256f83ad429fef438e11b780235f8379d92da7c7d3d30bcfbfff4984c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Decision Support Systems, Clinical</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Disease Notification</topic><topic>Humans</topic><topic>Influenza, Human - diagnosis</topic><topic>Medical Records Systems, Computerized</topic><topic>Natural Language Processing</topic><topic>Population Surveillance - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welsh, Gail</creatorcontrib><creatorcontrib>Wahner-Roedler, Dietlind</creatorcontrib><creatorcontrib>Froehling, David Arthur</creatorcontrib><creatorcontrib>Trusko, Brett</creatorcontrib><creatorcontrib>Elkin, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welsh, Gail</au><au>Wahner-Roedler, Dietlind</au><au>Froehling, David Arthur</au><au>Trusko, Brett</au><au>Elkin, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2008-11-06</date><risdate>2008</risdate><spage>1173</spage><epage>1173</epage><pages>1173-1173</pages><eissn>1559-4076</eissn><abstract>Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.</abstract><cop>United States</cop><pmid>18998957</pmid><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2008-11, p.1173-1173 |
issn | 1559-4076 |
language | eng |
recordid | cdi_proquest_miscellaneous_733873632 |
source | PubMed Central (Open Access) |
subjects | Artificial Intelligence Decision Support Systems, Clinical Diagnosis, Computer-Assisted - methods Disease Notification Humans Influenza, Human - diagnosis Medical Records Systems, Computerized Natural Language Processing Population Surveillance - methods |
title | Whole record surveillance is superior to chief complaint surveillance for predicting influenza |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20record%20surveillance%20is%20superior%20to%20chief%20complaint%20surveillance%20for%20predicting%20influenza&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Welsh,%20Gail&rft.date=2008-11-06&rft.spage=1173&rft.epage=1173&rft.pages=1173-1173&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E733873632%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p125t-309825256f83ad429fef438e11b780235f8379d92da7c7d3d30bcfbfff4984c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733873632&rft_id=info:pmid/18998957&rfr_iscdi=true |