Loading…

Whole record surveillance is superior to chief complaint surveillance for predicting influenza

Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of...

Full description

Saved in:
Bibliographic Details
Published in:AMIA ... Annual Symposium proceedings 2008-11, p.1173-1173
Main Authors: Welsh, Gail, Wahner-Roedler, Dietlind, Froehling, David Arthur, Trusko, Brett, Elkin, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1173
container_issue
container_start_page 1173
container_title AMIA ... Annual Symposium proceedings
container_volume
creator Welsh, Gail
Wahner-Roedler, Dietlind
Froehling, David Arthur
Trusko, Brett
Elkin, Peter
description Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733873632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733873632</sourcerecordid><originalsourceid>FETCH-LOGICAL-p125t-309825256f83ad429fef438e11b780235f8379d92da7c7d3d30bcfbfff4984c33</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhIMg7rr6FyQ3T4U2b9IkR1n8ggUvijdLmrxxI21Tk1bQX2_F9eBpmOFhGOaIrCshdMFLWa_Iac5vZcmlUPUJWVVKa6WFXJOX533skCa0MTma5_SBoevMYJGGvPgRU4iJTpHafUBPbezHzoRh-s_6hRkTumCnMLzSMPhuxuHLnJFjb7qM5wfdkKeb68ftXbF7uL3fXu2KsWJiKqDUigkmaq_AOM60R89BYVW1UpUMxJJL7TRzRlrpwEHZWt9677lW3AJsyOVv75ji-4x5avqQLf6swzjnRgIoCTWwhbw4kHPbo2vGFHqTPpu_S-Ab6qVeKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733873632</pqid></control><display><type>article</type><title>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</title><source>PubMed Central (Open Access)</source><creator>Welsh, Gail ; Wahner-Roedler, Dietlind ; Froehling, David Arthur ; Trusko, Brett ; Elkin, Peter</creator><creatorcontrib>Welsh, Gail ; Wahner-Roedler, Dietlind ; Froehling, David Arthur ; Trusko, Brett ; Elkin, Peter</creatorcontrib><description>Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 18998957</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Decision Support Systems, Clinical ; Diagnosis, Computer-Assisted - methods ; Disease Notification ; Humans ; Influenza, Human - diagnosis ; Medical Records Systems, Computerized ; Natural Language Processing ; Population Surveillance - methods</subject><ispartof>AMIA ... Annual Symposium proceedings, 2008-11, p.1173-1173</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18998957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welsh, Gail</creatorcontrib><creatorcontrib>Wahner-Roedler, Dietlind</creatorcontrib><creatorcontrib>Froehling, David Arthur</creatorcontrib><creatorcontrib>Trusko, Brett</creatorcontrib><creatorcontrib>Elkin, Peter</creatorcontrib><title>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.</description><subject>Artificial Intelligence</subject><subject>Decision Support Systems, Clinical</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Disease Notification</subject><subject>Humans</subject><subject>Influenza, Human - diagnosis</subject><subject>Medical Records Systems, Computerized</subject><subject>Natural Language Processing</subject><subject>Population Surveillance - methods</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAYhIMg7rr6FyQ3T4U2b9IkR1n8ggUvijdLmrxxI21Tk1bQX2_F9eBpmOFhGOaIrCshdMFLWa_Iac5vZcmlUPUJWVVKa6WFXJOX533skCa0MTma5_SBoevMYJGGvPgRU4iJTpHafUBPbezHzoRh-s_6hRkTumCnMLzSMPhuxuHLnJFjb7qM5wfdkKeb68ftXbF7uL3fXu2KsWJiKqDUigkmaq_AOM60R89BYVW1UpUMxJJL7TRzRlrpwEHZWt9677lW3AJsyOVv75ji-4x5avqQLf6swzjnRgIoCTWwhbw4kHPbo2vGFHqTPpu_S-Ab6qVeKA</recordid><startdate>20081106</startdate><enddate>20081106</enddate><creator>Welsh, Gail</creator><creator>Wahner-Roedler, Dietlind</creator><creator>Froehling, David Arthur</creator><creator>Trusko, Brett</creator><creator>Elkin, Peter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20081106</creationdate><title>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</title><author>Welsh, Gail ; Wahner-Roedler, Dietlind ; Froehling, David Arthur ; Trusko, Brett ; Elkin, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p125t-309825256f83ad429fef438e11b780235f8379d92da7c7d3d30bcfbfff4984c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Decision Support Systems, Clinical</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Disease Notification</topic><topic>Humans</topic><topic>Influenza, Human - diagnosis</topic><topic>Medical Records Systems, Computerized</topic><topic>Natural Language Processing</topic><topic>Population Surveillance - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welsh, Gail</creatorcontrib><creatorcontrib>Wahner-Roedler, Dietlind</creatorcontrib><creatorcontrib>Froehling, David Arthur</creatorcontrib><creatorcontrib>Trusko, Brett</creatorcontrib><creatorcontrib>Elkin, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welsh, Gail</au><au>Wahner-Roedler, Dietlind</au><au>Froehling, David Arthur</au><au>Trusko, Brett</au><au>Elkin, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole record surveillance is superior to chief complaint surveillance for predicting influenza</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2008-11-06</date><risdate>2008</risdate><spage>1173</spage><epage>1173</epage><pages>1173-1173</pages><eissn>1559-4076</eissn><abstract>Matched records of positive and negative influenza cases were parsed with a Natural Language Processor, the Multi-threaded Clinical Vocabulary Server (MCVS). Output was coded into SNOMED-CT reference terminology and compared to the SNOMED case definition of influenza. Odds ratios for each element of the influenza case definition by each section of the record were used to generate ROC curves. C-statistics showed that whole record surveillance was superior to chief complaint surveillance for predicting influenza.</abstract><cop>United States</cop><pmid>18998957</pmid><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2008-11, p.1173-1173
issn 1559-4076
language eng
recordid cdi_proquest_miscellaneous_733873632
source PubMed Central (Open Access)
subjects Artificial Intelligence
Decision Support Systems, Clinical
Diagnosis, Computer-Assisted - methods
Disease Notification
Humans
Influenza, Human - diagnosis
Medical Records Systems, Computerized
Natural Language Processing
Population Surveillance - methods
title Whole record surveillance is superior to chief complaint surveillance for predicting influenza
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%20record%20surveillance%20is%20superior%20to%20chief%20complaint%20surveillance%20for%20predicting%20influenza&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Welsh,%20Gail&rft.date=2008-11-06&rft.spage=1173&rft.epage=1173&rft.pages=1173-1173&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E733873632%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p125t-309825256f83ad429fef438e11b780235f8379d92da7c7d3d30bcfbfff4984c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733873632&rft_id=info:pmid/18998957&rfr_iscdi=true