Loading…

Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry

A new chelating resin using chitosan as a base material was synthesized. Functional moiety of 2-amino-5-hydroxy benzoic acid (AHBA) was chemically bonded to the amino group of cross-linked chitosan (CCTS) through the arm of chloromethyloxirane (CCTS-AHBA resin). Several elements, such as Ag, Be, Cd,...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) 2007-07, Vol.72 (5), p.1609-1617
Main Authors: Sabarudin, Akhmad, Lenghor, Narong, Oshima, Mitsuko, Hakim, Lukman, Takayanagi, Toshio, Gao, Yun-Hua, Motomizu, Shoji
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new chelating resin using chitosan as a base material was synthesized. Functional moiety of 2-amino-5-hydroxy benzoic acid (AHBA) was chemically bonded to the amino group of cross-linked chitosan (CCTS) through the arm of chloromethyloxirane (CCTS-AHBA resin). Several elements, such as Ag, Be, Cd, Co, Cu, Ni, Pb, U, V, and rare earth elements (REEs), could be adsorbed on the resin. To use the resin for on-line pretreatment, the resin was packed in a mini-column and installed into a sequential-injection/automated pretreatment system (Auto-Pret System) coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The sequential-injection/automated pretreatment system was a laboratory-assembled, and the program was written using Visual Basic software. This system can provide easy operation procedures, less reagent consumption, as well as less waste production. Experimental variables considered as effective factors in the improvement sensitivity, such as an eluent concentration, a sample and an eluent flow rate, pH of samples, and air-sandwiched eluent were carefully optimized. The proposed system provides excellent on-line collection efficiency, as well as high concentration factors of analytes in water samples, which results in highly sensitive detection of ultra-trace and trace analysis. Under the optimal conditions, the detection limits of 24 elements examined are in the range from ppt to sub-ppb levels. The proposed method was validated by using the standard reference material of a river water, SLRS-4, and the applicability was further demonstrated to the on-line collection/concentration of trace elements, such as Ag, Be, Cd, Co, Cu, Ni, Pb, U, V, and REEs in water samples.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2007.01.024