Loading…

Protein conformational perturbations affect the photoreduction of native cytochrome c peroxidase (III) at alkaline pH

Ferric cytochrome c peroxidase (CCP) undergoes a ligation-state transition from a pentacoordinate, high-spin (5c/hs) heme to a hexacoordinate, low-spin (6c/1s) heme when titrated over a pH range of 7.30-9.70. This behavior is similar to that exhibited by the ferrous form of the enzyme. However, the...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1992-12, Vol.31 (51), p.12847-12854
Main Authors: Wang, Jianling, Zhu, Huide, Ondrias, Mark R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ferric cytochrome c peroxidase (CCP) undergoes a ligation-state transition from a pentacoordinate, high-spin (5c/hs) heme to a hexacoordinate, low-spin (6c/1s) heme when titrated over a pH range of 7.30-9.70. This behavior is similar to that exhibited by the ferrous form of the enzyme. However, the photodissociation of the low-spin, axial ligand, exhibited by ferrous CCP at alkaline pH, is not observed for ferric CCP. Instead, a photoinduced reduction of the ferric heme is apparent in the pH range 7.90-9.70. In the absence of O2 and redox mediators such as methyl viologen (MV2+), the reoxidation of the photoreduced enzyme is very slow (tau 1/2 approximately 3 min). F(-)-bound CCP(III) (6c/hs) displays similar pH-dependent photoreduction. Horseradish peroxidase, however, does not. The formation of 6c/1s heme coincides with the onset of appreciable photoreduction (between laser pulses, > 60 ms) of CCP (III) at alkaline pH, suggesting a global protein conformational rearrangement within or around its heme pocket. Photoreduction of alkaline CCP(III) most likely involves intramolecular electron transfer (ET) from the aromatic residue in the proximal heme pocket to the photoexcited heme. We speculate that the kinetics of electron transfer are affected by changes in the orientation of Trp-191.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00166a020